
Software Systems Design

Version control systems and documentation

Krzysztof Kąkol

Software Developer

Who are we?

2

Jarosław Świniarski

Software Developer

Presentation based on materials prepared by

Andrzej Ciarkowski, M.Sc., Eng.

Outline

• Version control systems
• Distributed vs Client-server approach
• Common vocabulary & idioms
• The tools

• Documentation generation tools
• API Documentation Metalanguages
• The tools

• Issue tracking systems
• The lifecycle of a bug
• The tools

• Requirements engineering
• The process
• Requirements elicitation
• Requirements types

• Software design
• Design levels
• Design concepts

10.04.2017 3

Version control systems

What is it for?

• Allows to get back to any point of time in the history of the project
– e.g. when some code changes introduce new bug, it can be easily
traced

• Serves as an additional backup copy of the project files

• Allows to make informative comments on each code revision

• Makes it possible to make concurrent lines of code (branches) with
different features developed separately

• Allows to blame responsible persons for the bugs

10.04.2017 4

Client-server

• The “traditional” approach

• Single repository is located on a single
VCS server (Master copy)

• Each team member uses VCS client to
connect to the server and retrieve or
commit back the changes

• The examples: CVS, Subversion (SVN)

Distributed

• The “modern” approach

• There are multiple repositories, each of
them may contain full of partial copy of
the entire codebase

• The repositories may be synchronized to
each other

• The programmers’ “working copy” is
also a distributed repository

• The examples: Git, Mercurial

VCS architectures

10.04.2017 5

Revision graph

• Code revisions in the repository form a revision graph

• The main development branch spanning the entire project life is a
“trunk”

• There may be some additional branches used for e.g. adding
experimental features

• When the features developed in a branch are mature enough they
may be merged back into the trunk

• Alternatively the branch may be abandoned and discontinued

• Project milestones are labelled with “tags” so that it’s possible to
easily return to any chosen milestone/software version

• The users’ working copy may be also considered a branch, which is
merged back to the repository when user commits the code (this is
exactly how it is done in Git)

10.04.2017 6

Basic VCS operations

• checkout – create local working copy from the repository (svn checkout | git checkout)

• commit – send back local changes to the repository (svn commit | git commit)

• merge – combine changes made in two branches into one branch, possibly causing conflicts
(svn merge | git merge)

• update – merge changes made in the repository by other people into the local working copy
(svn update | git pull)

• branch/tag – create a new named branch or tag based on the base revision of working copy
(svn branch / tag | git branch / tag)

• status – get changed status of the files in the working copy (svn stat | git stat)

• resolve – mark versioning conflict as resolved (svn resolve | git resolve)

• revert – revert changes done to specific files/folders since last update/checkout (svn revert | git
revert)

10.04.2017 7

Basic usage scenario - SVN

svn checkout <remote repository url> [local path]

creates local working copy from the repo

edit some code, add files, etc.

svn commit –m „[project] added file test.c”

commit local changes to the remote repo

10.04.2017 8

Basic usage scenario - SVN

svn stat

query status of local working copy

svn update

merge remote changes into local working copy

svn add test2.c

add new file to the working copy

svn commit –m „[project] added file test2.c”

commit local changes to the remote repo

10.04.2017 9

Basic usage scenario – Git

git clone <remote repository url> [local path]
creates local repo clone of remote origin repo

edit some code, add files, etc.

git commit –m „[project] added file test.c”
commit local changes to the local repo

git push origin
synchronize changes in local repo to remote origin

10.04.2017 10

Basic usage scenario – Git

git stat

query status of local working copy

git pull

merge remote changes into local repository clone & working copy

git add test2.c

add new file to the working copy

git commit –m „[project] added file test2.c”

git push origin

10.04.2017 11

Versioning conflicts

• Conflict happens when multiple users
make changes to the same file
simultaneously

• Conflicts usually indicate bad
communication in the development
team and should be avoided

• Kinds of conflicts
• Tree conflict – change in the file/folder

structure, renaming files, moving folders etc
• Editing conflict – multiple edits of the same

file region

• Conflict must be resolved before file
may be committed

10.04.2017 12

How to write messages

10.04.2017 13

• Author, timestamp and list of affected files is given automatically
(who, when, what)

• Reference of task or bug in bugtracking system (what)

• Short description (why, how)

What should be stored in VCS repository

• Source code (except for runtime-generated files)

• IDE project files (except for site/user-specific configuration)

• Project resources

• Project maintenance/build scripts (e.g. database creation scripts)

• Everything that is needed to get the project to build and is not
generated on the fly or common component downloaded from
public location

10.04.2017 14

What shouldn’t be stored in the repository

• Source files generated by the build system during the building
process

• Project intermediate & output files (e.g. .obj, .o, binary files,
debugging symbols…)

• Everything that is automatically generated during the build

10.04.2017 15

Tools

• Command-line clients
• svn (Subversion); use svn --help

• git (Git); use git –help

• GUI clients
• TortoiseSVN (Windows)

• TortoiseGIT (Windows)

• GitHub (Windows/Mac)

• SourceTree (Windows/Mac)

10.04.2017 16

Tools

• Integrated Development Environment (IDE) Integration
• AnkhSVN (Subversion for Visual Studio)

• Subclipse (Subversion for Eclipse)

• Git is integrated by default both in Visual Studio and Eclipse

• Additional tools used by VCS
• diff – UNIX tool for generating “difference” files between 2 text files in so-

called “unified diff” format; diff tool is used by almost all VCS for sending the
code changes between revisions

• patch – UNIX tool for integrating diff files back with source files

10.04.2017 17

Tools

• Hosted repositories
• GitHub – free for open-source projects (public repository)

• GitLab

• BitBucket

• Assembla

• CodePlex

• SourceForge

10.04.2017 18

VCS systems - sources

https://en.wikipedia.org/wiki/Revision_control

https://subversion.apache.org/

http://svnbook.red-bean.com/

http://git-scm.com/

http://git-scm.com/book/en/v2

http://pcottle.github.io/learnGitBranching/

10.04.2017 19

Automatic code documentation tools

• Writing code is funny enough to be distracted by writing additional
API docs ;)

• Code documentation tools serve for generating documentation
automatically based on the code and developers’ meta tags

• The code still needs to be amended by the tags and the
documentation prose in the comments, but there’s no need for
context switching between writing the code and the docs

10.04.2017 20

API docs metalanguages

• Some languages have documentation
built into the standard and supported
by the compiler
• Java – JavaDoc
• C# - XML Docs

• There is no “official” standard for C nor
C++
• But “de facto” standard exists – Doxygen

• The good thing is that Doxygen
supports also JavaDoc and MS XML
Docs, so it’s a “one for all” tool

10.04.2017 21

Doxygen features

• Generation of HTML, PDF, LaTeX, Windows Help, UNIX man and
many other formats from single sources

• Support for embedded math formulas (LaTeX), rich formatting
elements, code hyperlinking

• One documentation language to cover all interesting programming
languages

10.04.2017 22

Doxygen in action

10.04.2017 23

Additional tools

GraphViz – Graph Visualization Toolbox – integrated with Doxygen,
allows for automatic generation of UML class diagrams and many
others

10.04.2017 24

Issue tracking systems

• Every piece of software has bugs

• Developers tend to forget about discovered bugs as soon as they
start coding again (or even sooner)

• Issue tracking systems are for managing the information about the
bugs and not letting the lazy developers never get back to them ;)

10.04.2017 25

Typical lifecycle of a bug

10.04.2017 26

Issue tracking system features

• Web-based user interface for filing & managing bug reports

• Integration with VCS repositories
• Hyperlinking bug reports in VCS commit comments (#3345)

• Hyperlinking revision numbers in bug reports (r109)

• Browsing VCS code changes through issue tracking UI

• Sending email notifications on bug status changes (notifying project
maintainer on open bugs, notifying reporter on closing, etc.)

• IDE Integration – task-focused interfaces

10.04.2017 27

10.04.2017 28

How to properly report a bug

• Brief summary i.e. „Module XYZ throws exception when no data
provided”

• Detailed description

• Steps to reproduce the problem

• Description of environment (OS, software version, platform etc.)

• Screenshots, video screen captures

• Logs

• Data needed to reproduce the problem i.e. account names

10.04.2017 29

Tools

• Bugzilla – issue tracking system originally developed for Mozilla web
browser

• Trac – issue tracking, project management & documentation Wiki in
python

• JIRA – large-scale software project management & bug tracking
(commercial)

• Mantis, Launchpad, GNATS and many many others…

10.04.2017 30

Requirements engineering

• The “classical” waterfall model lists 2 phases before the
actual implementation:

• Requirements engineering
The requirements define the required functionality of
the final package. These are driven by what the end-user
expects the system to provide.

• Design
Given a set of user and system requirements design
often takes two steps: an overall system architecture
followed by detailed design of the system’s modules and
interfaces

• No matter what development model is used these phases
take place in some form almost always

10.04.2017 31

Requirements engineering stages

• Feasibility study

• The client approaches the organization for getting the desired product developed, comes up with
rough idea about what all functions the software must perform and which all features are expected
from the software.

• The analyst performs a study whether the system and functionality are feasible to develop.

• The output is a decision whether project should be undertaken.

• Requirements gathering & analysis

• The analyst and engineers communicate with the client and end-users to know their ideas on what the
software should provide and which features they want the software to include.

• Requirements specification

• The document created by the analyst after the requirements are collected from the stakeholders

• Requirement validation

• The specification is validated if it is legal, practical, complete, unambiguous etc.

10.04.2017 32

Requirement elicitation process

• Requirement elicitation is performed through
• Interviews (oral, written, one-on-one, group, etc…)
• Surveys
• Questionnaires
• Task analysis – team of engineers and developers analyses the operation and possibly the

existing solutions
• Domain analysis – experts from the given domain are questioned regarding the

requirements
• Brainstorming – informal debate among stakeholders
• Prototyping – building UI model and gathering the client’s feedback
• Observation – team of experts visits client’s workplace and observe current practices &

workflow

10.04.2017 33

Requirement types

• Functional requirements
• Define function of a system
• Described as a set of inputs, the behavior and outputs
• Define WHAT a system is supposed to accomplish
• Expressed in the form “system must do …”

• Non-functional requirements
• Impose constraints on the design or implementation with regard to performance,

security, reliability…
• Influence system architecture
• Define how a system is supposed to be
• Expressed in the form “system shall be …”

10.04.2017 34

Functional requirements

• Business processes and workflow are explored in terms of how they would be
mirrored in a software system.

• An analyst with deep understanding of both the business processes and a
computer system's capabilities is required to gather functional requirements

• Functional requirements are captured in the Use Cases

• The example
• Client asks for something simple: "Registered users may enter their address."
• The functional requirements could be stated as: "Registered users may optionally add or

edit one or more addresses associated with their account. Addresses are listed on the
account detail screen. The edit form is a popup with fields for street, city, ...".

• The functional specifications would then state how a user becomes registered, where in the
application they may enter an address, the input fields that comprise the address, input
validation logic, and the data model and systems used for storage.

10.04.2017 35

Functional requirements examples

• Interface requirements
• Field 1 accepts numeric data entry
• Field 2 only accepts dates before the current date
• Screen 1 can print on-screen data to the printer

• Business requirements
• Data must be entered before a request can be approved.
• Clicking the Approve button moves the request to the Approval Workflow.

• Regulatory/compliance requirements
• The database will have a functional audit trail.
• The system will limit access to authorized users.
• The spreadsheet can secure data with electronic signatures.

• Security requirements
• Members of the Data Entry group can enter requests but can not approve or delete requests.
• Members of the Managers group can enter or approve a request but can not delete requests.
• Members of the Administrators group cannot enter or approve requests but can delete requests.

10.04.2017 36

Non-functional requirements

• Called “qualities”, “constraints”, “quality attributes”,
“non-behavioral requirements”, “-ilities”

10.04.2017 37

• Accessibility
• Availability
• Capacity
• Compliance
• Deployment
• Effectiveness
• Environmental

protection
• Exploitability
• Extensibility

• Interoperability
• Maintainability
• Modifiability
• Operability
• Performance
• Portability
• Reliability
• Reusability
• Response time

• Scalability
• Stability
• Supportability
• Testability
• Usability
• ……

Functional vs. non-functional

• Sometimes the difference between functional and non-functional
requirements is hard to draw

• Sometimes it’s impossible to separate the issues “what system
does” from “how it is done”

• Depending on the context, similar requirements may be considered
functional or non-functional

• It’s better to list the requirement under wrong category than to not
list it at all

• It takes a great deal of experience to get the distinction right, so
don’t worry ☺

10.04.2017 38

Other interesting requirement categories

• Data model and data requirements
• Without technical details like DBMS system, record structure etc.
• Dependencies or 3rd party data sources, expectations towards user data input
• Data model explained only at level which solves business needs, e.g. list of the user’s

address fields.

• User Interface requirements
• The look and feel of the system
• Sample UI forms

• Performance requirements

• Hardware platform

• Software dependencies

• Security

10.04.2017 39

Software design

• Ok, so we have our requirements specced
out, what next?

• Let’s move to the design phase and switch
focus from problem domain to solution
domain

• Now is the time to get technical with our
requirements

• “software design takes the user
requirements as challenges and tries to
find optimum solution”

10.04.2017 40

Design levels

• Architectural design – highest abstract version of the system,
identifies the software as a system with many components or
modules interacting with each other

• High-level design – breaks the components into modules or sub-
modules – sometimes needed in large systems

• Detailed design – deals with the implementation of modules,
defines logical structure of each module and their interfaces to
communicate with other modules

10.04.2017 41

Design strategies

• Structured design
• Conceptualization of problem into several well-organized elements of solution,

based on “divide-and-conquer” rule
• Small pieces of problem become modules
• Modules are arranged in hierarchy and communicate with each other

• Function-oriented design
• System is comprised of many smaller sub-systems (functions), which perform some

significant tasks
• Functions are similar to modules, which share information among themselves by

means of information passing and globals
• When a program calls a function, the function changes state of the program
• Works well where system state does not matter and program work on input rather

than on state

10.04.2017 42

Design strategies

• Object-oriented design
• Focuses on entities (objects) and their characteristics instead of functions
• All entities involved in the solution are known as objects; objects have some

attributes and some methods to perform on attributes
• All objects associated a generalized description known as class. An object is an

instance of a class. Class defines the attributes and methods forming the
functionality of the objects.

• Encapsulation – the attributes and methods are bundled together, access to the
data and methods from the outside world is restricted (information hiding) –
decreases coupling

• Inheritance – classes may be organized in a hierarchical manner where lower sub-
classes can import, implement and re-use parts of their super-classes

• Polymorphism – a mechanism allowing different tasks to be performed on different
types (classes) using common interface shared among them

10.04.2017 43

Questions?

10.04.2017 44

Krzysiek kkakol@pgs-soft.com

Jarek jswiniarski@pgs-soft.com

www.pgs-soft.com

