Electronic musical instruments

MUSICAL SOUNDS

Properties, analysis and additive resynthesis Definition: a musical sound is a sound produced by a musical instrument.

Musical sounds have the following features:

- pitch placement on a musical scale
- timbre how it "sounds"
- loudness
- duration

Loudness and timbre are usually dynamic – they change as the sound plays.

Musical sounds

- Melodic sounds:
 - have a defined pitch,
 - they have a harmonic structure,
 - instruments: strings, winds, a few percussives
- Rhythmic (non-melodic) sounds:
 - pitch is undefined,
 - they have noise-like character,
 - most percussive instruments (e.g. a drum kit).

Synthetic musical sounds

- The aim of sound synthesis is to create a signal that has properties of a musical sound.
- That does not mean that we have to recreate sounds of existing instruments.
- We can create synthetic signals that sound the way we like, but they (usually) need to have features of a musical sound.
- The most important factors we need to control:
 - amplitude envelope,
 - spectral structure,
 - variability in time.

Temporal analysis and envelope

- Temporal analysis shows how the amplitude changes in time.
- We can also determine sound duration.
- Envelope follows the "edge" of the time plot.
- Envelope represents loudness variations in sound.

Time

Phases of the sound envelope

- Attack (A) + decay (D)
 - the sound builds up, its envelope rises up
 - the initial transient (unsteady state)
 - large changes in timbre attack defines the sound
- Sustain (S)
 - steady state, the sound continues to play, but its loudness and timbre may change (e.g. vibrato).
 - some instruments do not have the sustain phase.
- Release (R)
 - the sound naturally fades out.

Examples of sound envelope

Envelope and the sound

- The shape of envelope depends on the instrument.
- The envelope also changes due to articulation
 - the way a musician plays on the instrument.
 For example, picking the guitar string harder shortens
 the attack and lengthens the release phase.
- How do we create the envelope in a synthesizer?
- Envelope generator creates a control signal
 an ADSR envelope.
- This signal is used to control the gain of the output amplifier, so that the loudness changes according to the envelope shape.

Parameters of the classic ADSR envelope:

- A: attack phase duration
- D: decay phase duration
- S: sustain phase level (not duration!)
- R: release phase duration

Spectral analysis

- Determining sound properties in the frequency domain.
- Spectrum of the musical sound defines its pitch and timbre.
- Fourier analysis: any periodic signal can be decomposed into a sum of harmonic (sine) tones (partials) with different amplitudes and frequencies.
- How to compute a spectrum:
 - cut a part of the sound (preferably: a period) with a window,
 - compute the Fourier transform (FFT),
 - the result: spectral amplitude vs frequency.

Spectrum of a typical musical sound

Spectral amplitude

Frequency

What do we observe in the plot?

- The spectrum has peaks strong maxima.
- Peaks are placed in equal distances from each other, they form harmonic series.
- The first peak is found at the fundamental frequency of the sound (f_0) .
- Higher peaks are harmonics: first $(2f_0)$, second $(3f_0)$, third $(4f_0)$, and so on.
- A spectrum can also contain small non-harmonic peaks and a noise floor.

Why does the spectrum look like this? Because the sound is composed from standing waves, with different amplitudes.

REMEMBER THIS!!!

- The fundamental frequency of a sound defines its pitch.
- Structure of all spectral components defines the timbre of the sound.

It's not that easy in practice.

- Sometimes the first spectral peak is not the fundamental. It has to be the first peak in the harmonic series.
- In some sounds, even peaks (f1, f3, f5, ...) are missing from the spectrum – but it's still a harmonic sound.
- A few bell-like instruments produce inharmonic sounds.
- Most percussive sounds have a noise-like spectrum; there are no peaks, so no fundamental frequency and therefore, no pitch.

Percussive sounds

- Most percussive sounds have undefined pitch, they cannot be positioned on a musical scale.
- They usually are a band-limited noise with a specific envelope (very short attack, no sustain, long release).
- Depending on the spectral structure, we can say that the sound is higher or lower.
- But we cannot define a pitch (e.g. A1), because there is no fundamental frequency.

Synthetic percussive sounds are created by filtering a wideband noise and adding an envelope (very easy to do).

Describing a sound

- Low / high:
 - describes a pitch position on a musical scale,
 - does not depend on a timbre.
- Dark / bright:
 - describes a timbre
 - higher bandwidth (larger number of partials) means that the sound is brighter
 - does not depend on the pitch.
- Quiet / loud:
 - depends only on the amplitude.

Additive synthesis

- We already know that a harmonic sound may be decomposed into partials.
- This process can be reversed: we can sum partials:
 - with frequencies in a harmonic order defined by a fundamental,
 - with amplitudes selected in order to obtain the desired spectral shape.
- This is the additive sound synthesis (from Latin: additio).
- This method was rarely used in commercial synthesizers.

Spectral changes in musical sounds

- The example of a spectrum presented earlier was captured at an arbitral moment.
- If the spectrum remains the same for the whole sound duration, the sound is dull, dead, uninteresting.
- The spectrum (and hence the timbre) of musical instruments sounds is variable, dynamic.
- Articulation (the way a musician plays the instrument) has a very large impact on the timbre changes, especially in the attack phase.
- In order to get alive, interesting sounds, we need to introduce the timbre changes into the synthesis process.

Waterfall spectrum plot

Observe how the partials change in time.

file ctptf4.an trumpet f4 mf base freq = 349.00 Hz

Spectrogram - a plot of spectral changes

3D plot: time vs. frequency vs. spectral amplitude (color)

Describing the sound, Part Two

- Alive, warm, dynamic sound:
 - the sound changes as it plays,
 - changes in timbre, pitch (e.g. vibrato), loudness,
 - analogue oscillators were not perfect, but they introduced a desired variability in sounds.
- Dead, cold, static, "synthetic" sound:
 - no changes as the sound plays,
 - digital oscillators the sound remains the same,
 - dull, boring results,
 - in order to make the synthetic sounds more alive, we need a modulation.

So, why two musical instruments produce sounds with different timbre, while their pitch is the same?

- Different envelopes.
- Different spectral structure.
- Different changes in spectrum, especially during the attack phase.

How to produce synthetic sounds with different timbre?

- Set the desired envelope (easy).
- Shape the static spectrum (easy).
- Ensure spectral changes in time, so that the sound is alive (this is much more difficult).

Back to the additive synthesis: how do we introduce dynamic spectral changes? The parameters can't be constant, they must be a function of time. We need to control:

- amplitude of each partial: $A_k(t)$
- frequency deviation (from the harmonic frequencies) of each partial: $\Delta f_k(t)$

If you *really* need a formula:

$$y(n) = \sum_{k=1}^{M} A_k(n) \sin\left(2\pi n \left(k \cdot f_0 + \Delta f_k(n)\right)\right)$$

A block diagram of additive synthesis

The easiest synthesis you can imagine. How do we create the control functions?

- They can be created "by hand". Fairlight tried this, it didn't work (too cumbersome).
- We can extract the parameters from the analysis of recorded musical sounds.
- We can then build a sound by the additive resynthesis.
- Instead of generating and summing the partials, we can use IFFT (inverse Fourier transform), it's easier.
- In practice, samplers do (almost) the same thing much easier.

PV analysis

- PV phase vocoder analysis
- A bank of narrowband filters tuned to the harmonic frequencies.
- The filters measure energy in each band and produce the control functions.
- This method is inaccurate and coarse, the results are not very good sounding.
- We need to know the fundamental frequency.
- This method fails if the partials go outside their band, especially in the attack phase.

PV analysis

MQ – an analysis method proposed by McAulay & Quatieri

- Digital FFT analysis in short signal frames.
- Local spectral maxima are found in each frame.
- Maxima that occur in the consecutive frames form spectral paths.
- Paths with sufficient duration and level are selected as the control functions.
- Sound resynthesis by IFFT.
- This method is much more accurate than PV.

MQ analysis

The analysis result – the extracted paths

But, why would we decompose the sound and then rebuild it back? The answer: because we can modify the extracted parameters. For example, we can:

- transpose the sound change its pitch, without changing its duration (sampling can't do that!),
- time stretch/compress the sound, without changing its pitch,
- remove unwanted spectral components and noise,
- modify the sound, add/remove partials, mix sounds, add effects, etc. (again: sampling can't do that).

Examples of additive synthesizers

Kurzweil K150 (1986)

- digital additive synthesis
- 240 oscillators
- each partial can be controlled with a computer

Kawai K5000 (1996)

- advanced sound workstation
- additive + sampling
- difficult to use

Multitone generators

- Multitone generators (also called additive generators) are used in some synthesizers.
- They generate tones in harmonic series and sum them in a defined proportion.
- This is not an additive synthesis: amplitudes are not individually controlled, the composed sound is further processed as a whole.
- Sometimes, two separate multitone generators for odd and even partials are used more realistic effects.

Additive synthesis - a summary

Pros:

- it can recreate sounds of musical instruments,
- sound spectrum can be modified directly,
- it's easy to do pitch shifting and time stretching,
- conceptually easy algorithm.

Cons:

- not for creating new sounds,
- complicated control of the synthesis process
 each partial must be controlled separately,
- a sampler gives a similar result and it's much easier to use.

To conclude the lecture: how do EMIs create sounds?

- We can compose the sound from the partials (additive synthesis – we have already learned that).
- We can combine and shape raw initial sounds (subtractive and wavetable synthesis)
- We can create the sound with a computer algorithm, by a modulation (FM synthesis)
- We can simply process and play back recorded sounds (sampling)
- We can build a computer model of an instrument that will create synthetic sounds (waveguide synthesis).

Bibliography

- SPEAR Sinusoidal Partial Editing Analysis and Resynthesis: http://www.klingbeil.com/spear/
- M.K. Klingbeil: *Spectral Analysis, Editing and Resynthesis: Methods and Applications*. Columbia Univ. 2009 (dostępne ze strony SPEAR)
- R.J. McAulay, T.F. Quatieri: Speech Analysis/Synthesis Based on A Sinusoidal Representation. IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 4, Aug. 1986, pp. 744-754.
- M. Russ: Sound Synthesis and Sampling. Focal Press, Oxford 1996.
- Vintage Synth Explorer: www.vintagesynth.com
- Wikipedia