
ARCHITECTURE OF

DIGITAL SIGNAL

PROCESSORS

Applications of signal processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems

Digital signal processor

Our definition:

digital signal processor (DSP)

is a chipset specialized in optimal processing of digital signal
samples, performing repeated operations on each sample.

In this lecture we will answer the question:

which features of a digital signal processor architecture allow for
optimal processing of digital signals, better than a CPU?

Main features of DSP architecture

The most important features of DSP architecture, that separate
them from general purpose processors, are:

▪ Harward architecture,

▪ pipelining,

▪ circular addressing,

▪ special instructions (MAC, vectorization, etc.).

DSP components

The most important components of a DSP:

▪ ALU – arithmetic-logic unit, operations: + – AND OR NOT XOR

▪ multiplier (*)

▪ FPU – floating point processing unit

▪ registers – memory cells holding data on which the processor
operates,

▪ accumulator – a special register which holds intermediate
results of the operations,

▪ address generator

▪ buses – lines for data exchange between registers
and memory.

Performing operations

Example calculations in a program:

y = 0.5 * a + 0.3 * b + 0.2 * c

A typical sequence of operations on a processor:

▪ read data from memory (a, b, c, constants), write them
to registers,

▪ execute operations (* * + * +), save intermediate results
in the accumulator,

▪ copy the result to the memory (y).

Accumulator

▪ Accumulator is a special register which holds results of most
arithmetic and logic operations.

▪ On a 16-bit processor, multiplication of two 16-bit numbers
yields a 32-bit result, so the accumulator must be at least
32 bits long.

▪ When the intermediate results are accumulated, the number
can exceed 32 bits.

▪ Therefore, the accumulator has additional “guard bits”.

▪ On 16-bit processors, the accumulator can be 40-bit long.

▪ A programmer can write to and read from registers,
including the accumulator.

Processor architectures

▪ von Neumann architecture

– common memory for program and data,

– used in general-purpose CPUs, e.g. in PC.

▪ Harward architecture

– separate memory for program and data,

– independent access to each memory,

– used e.g. in DSPs.

▪ Harward architecture extensions in DSPs:

– dual memory access (dual data buses),

– instruction cache,

– input/output controller.

Processor architectures

Super Harvard Architecture (dual memory, instruction cache, I/O controller)

Harvard Architecture (dual memory)

Von Neumann Architecture (single memory)

Program

Memory

instructions

and

secondary

data

CPU Data

Memory

data only
Instruction

Cache

I/O

Controller

data

PM address bus DM address bus

PM data bus DM data bus

Program

Memory

instructions

only

CPU

Data

Memory

data only

PM address bus DM address bus

PM data bus DM data bus

Memory

data and

instructions

CPU

address bus

data bus

Super Harvard Architecture (dual memory, instruction cache, I/O controller)

Harvard Architecture (dual memory)

Von Neumann Architecture (single memory)

Program

Memory

instructions

and

secondary

data

CPU Data

Memory

data only
Instruction

Cache

I/O

Controller

data

PM address bus DM address bus

PM data bus DM data bus

Program

Memory

instructions

only

CPU

Data

Memory

data only

PM address bus DM address bus

PM data bus DM data bus

Memory

data and

instructions

CPU

address bus

data bus

Block diagram of a DSP

Program

Memory

instructions

and

secondary

data

CPU

Data

Memory

data only
Instruction

Cache

I/O

Controller

(DMA)

PM address bus DM address bus

PM data bus DM data bus

PM Data

Address

Generator

DM Data

Address

Generator

Program Sequencer

Data

Registers

Multiplier

ALU

Shifter High speed I/O

(serial, parallel,

ADC, DAC, etc.)

Processor cycles

▪ Processor is controlled by a clock, frequency of which is set
by a phase-locked loop (PLL) circuit.

▪ Each clock pulse starts a processor cycle.

▪ Each program instruction requires one or more cycles.

▪ Clock frequency determines the number of cycles available
per second for program execution. For example, a 100 MHz
clock means 100 million cycles per second.

▪ For an audio signal sampled with 48 kHz, we have 2083 cycles
to process one sample.

Instruction execution

Execution of a single instruction may be divided into stages:

▪ F (fetch) – get the instruction from memory or cache,

▪ D (decode) – decode the instruction

▪ E (execute) – run the instruction

▪ A (access) – open the memory

▪ S (store) – write the result to memory

Often, only F, D, E stages are considered.

Sequential processing

In sequential processing, a new instruction can be started only
after the previous one has completed.

Przetwarzanie niepotokowe

Clock cycle

Instr. 1

1 2 3 4 5 6 7 8 9

1F

2F

1D

2D

1S1E

2E

1A

Instr. 2 2A 2S

10

Pipelining

Pipelining is performed as follows.

▪ First stage (F) of the first instruction is performed.

▪ When the processor proceeds to the second stage (D),
the first stage (F) of another instruction is started.

▪ Instruction stages are performed with overlapping,
which speeds up the program execution.

▪ Pipelining is used on digital signal processors.

▪ Conflict cases (hazards), such as jump to another instruction
in the code, break the pipeline, result in reverting partially
performed instructions and restarting the pipeline.

Pipelining

Przetwarzanie potokowe

Clock cycle

Instr. 1

1 2 3 4 5 6 7 8 9

1F

2F

3F

1D

2D

3D

1E

2E

3E

4E

5E

4D

5D

4F

5F

10

Instr. 2

Instr. 3

Instr. 5

Instr. 4

1A 1S

2A

3A

4A

5A

2S

3S

4S

5S

Instr. 6

6F 6D 6E 6A 6S

Linear buffer

A common case in digital signal processing (e.g. FFT filter).

▪ N latest samples are processed.

▪ Samples are stored in a buffer in memory.

▪ A new sample arrives:

– the oldest sample is removed,

– the remaining samples are shifted by one position,

– a new sample is written at the end of the buffer.

▪ This is a linear buffer.

▪ Processor cycles are wasted for moving samples in memory.

Circular buffer

▪ A circular buffer may be visualized as a ring.

▪ Pointer (index) indicates the current write position
(the oldest sample).

▪ A new sample is written at the pointer.

▪ The pointer is advanced to the next position.

▪ No data is moved, the other samples remain in position.

0b

1b

2b

3b
4b

5b

6b

7b 0x

1x

2x

3x
4x

5x

6x
7x

1x

2x

3x

4x
5x

6x

7x
8x

8x
7x

6x

5x

3x
4x 2x

9x

7=M

Circular addressing

▪ In practice, the circular buffer is implemented as a normal
linear buffer and a pointer (index).

▪ The pointer is moved, it indicates the order in which the
samples are processed.

▪ Once the pointer reaches the buffer end, it wraps
to the beginning.

▪ A linear buffer in memory uses circular addressing.

▪ Digital signal processors have circular addressing
implemented in hardware.

Circular and linear buffer – an illustration

13 14 10 11 12 10 11 12 13 14

13 14 15 11 1215

13 14 15 16 1216

13 14 15 16 1717

18 14 15 16 1718

18 19 15 16 1719

11 12 13 14 1515

12 13 14 15 1616

13 14 15 16 1717

14 15 16 17 1818

15 16 17 18 1919

Circular buffer Linear buffer

Circular addressing

On a standard CPU, we have to wrap the pointer manually.

buffer[index] = new_sample; // write
// … do the processing
index = index + 1; // advance the index
if (index == N) // end of buffer

index = 0; // wrap index

On DSP, we use circular addressing

▪ in Assembler – by turning on the circular mode,

▪ in C – by using a special instruction (intrinsic):

buffer[index] = new_sample; // write
// … do the processing
index = _circ_incr(index, 1, N) // advance the index

// with wrapping

MAC

▪ A common operation is signal processing: multiply numbers
and accumulate the results

y ← y + a * x

▪ MAC = multiply and accumulate.

▪ On a standard CPU, we must do multiplication and addition
separately.

▪ Signal processors have MAC implemented in hardware,
as a single processor instruction.

▪ This reduces the number of used cycles and speeds up
program execution.

▪ Many modern DSPs can do two MAC operations at the same
time (dual MAC).

MAC in practice

Standard CPU:

for (i = 0; i < N; i++) {
result += buffer[index] * coeff[index];
index = index + 1;
if (index == N) index = 0;

}

DSP with MAC

for (i = 0; i < N; i++) {
result = _smac(result, buffer[index], coeff[index]);
index = _circ_incr(index, 1, N);

}

SIMD (vectorization)

▪ Another common case: multiplication of two vectors.

▪ Requires N multiplications (N = vector length).

▪ Floating point numbers may be written with single (4 bytes)
or double (8 bytes) precision.

▪ A processor can multiply two 4B or two 8B numbers.

▪ Two 4B numbers can be packed into one 8B number.

▪ One 8B multiplication instead of two 4B multiplications.

▪ The number of multiplications is reduced to N/2.

▪ This is vectorization, or SIMD (single instruction, multiple
data) – the same operations on different data.

▪ CPUs also allow vectorization (SSE extensions).

Vectorization – an example

Without vectorization:

for (i = 0; i < N; i++) {
y[i] = a[i] * b[i];

}

With vectorization – more code, less operations:

for (i = 0; i < N; i+=2) {
_amem8_f2(&y[i]) =

_dmpysp(_amem8_f2(&a[i]), _amem8_f2(&b[i]));
}

Memory organization

DSP memory is divided physically and logically into several levels.
Each successive level has slower access time.

▪ L1 – cache memory, on DSP

– for internal use of the processor.

▪ L2 – DSP internal memory (on chip)

– can be used by a programmer (program and data),

– usually small (e.g. 1 MB).

▪ L3 – external memory (off chip)

– a separate memory module, e.g. DDR3

– much slower than L2 but can be bigger (GBs).

ROM memory, often flashable – program and constants.

SARAM and DARAM

▪ SARAM (single access random access memory)
– a standard memory, one memory read or write at a time.

▪ DARAM (dual access RAM) – dual data bus, two operations
at a time (two writes, two reads or read + write).

▪ On a DSP: the whole memory may be DARAM, or part
of memory may be DARAM and the rest is SARAM.

▪ Memory is divided into banks (pages) – concurrent access
to different banks.

▪ A programmer must consider which data to put into DARAM
and which may be in SARAM.

Memory map

▪ A memory map is specific for a DSP model, it is determined
by the manufacturer.

▪ Each memory area is assigned to a range of addresses.

▪ Address is a number which determines the position
in memory.

▪ A memory map assigns the logical addresses to physical
memory sections.

▪ It is required in each DSP program – the compiler must
have it to compile a program.

Memory map

An example of a memory map, from C5535 documentation:

Memory map

An example of memory map definition (C5535):

MEMORY

{

PAGE 0: /* ---- Unified Program/Data Address Space ---- */

MMR (RWIX): origin = 0x000000, length = 0x0000c0 /* MMRs */

DARAM0 (RWIX): origin = 0x0000c0, length = 0x00ff40 /* 64KB - MMRs */

SARAM0 (RWIX): origin = 0x010000, length = 0x010000 /* 64KB */

SARAM1 (RWIX): origin = 0x020000, length = 0x020000 /* 128KB */

SARAM2 (RWIX): origin = 0x040000, length = 0x00FE00 /* 64KB */

VECS (RWIX): origin = 0x04FE00, length = 0x000200 /* 512B */

PDROM (RIX): origin = 0xff8000, length = 0x008000 /* 32KB */

PAGE 2: /* -------- 64K-word I/O Address Space -------- */

IOPORT (RWI) : origin = 0x000000, length = 0x020000

}

Memory sections

Logical memory sections are assigned to addresses.

The main sections of a compiled program are:

▪ .text – program code

▪ .stack – stack (locally declared variables)

▪ .data – initialized variables

▪ .bss – global and static variables

▪ .const – constants

▪ .sysmem – stack (dynamically allocated memory)

A programmer may create custom sections.

Memory sections

An example of memory sections definition for a compiler (C5535):

SECTIONS

{

.text >> SARAM1|SARAM2|SARAM0 /* Code */

.stack > DARAM0 /* Primary system stack */

.sysstack > DARAM0 /* Secondary system stack */

.data >> DARAM0|SARAM0|SARAM1 /* Initialized vars */

.bss >> DARAM0|SARAM0|SARAM1 /* Global & static vars */

.const >> DARAM0|SARAM0|SARAM1 /* Constant data */

.sysmem > DARAM0|SARAM0|SARAM1 /* Dynamic memory (malloc) */

.switch > SARAM2 /* Switch statement tables */

.cinit > SARAM2 /* Auto-initialization tables */

.pinit > SARAM2 /* Initialization fn tables */

.cio > SARAM2 /* C I/O buffers */

.args > SARAM2 /* Arguments to main() */

vectors > VECS /* Interrupt vectors */

.ioport > IOPORT PAGE 2 /* Global & static ioport vars */

.fftcode > SARAM0 /* Custom sections */

.input > DARAM0, align(4)

}

Using sections in C code

This is how we can create a buffer in DARAM or SARAM,
in a default .bss section:

#pragma DATA_SECTION(bufor, "ddr");
int buffer[8192];

If we declare an external memory in a memory map:

.ddr > DDR3

we can create a buffer in DDR memory using a compiler pragma
(example for a TI processor):

int buffer[8192];

Internal and external memory

Which data in internal L2 memory (DARAM/SARAM)?

▪ program code, stack, heap

▪ most variables

▪ buffers that are often accessed

Which data in external L3 memory?

▪ large buffers that don’t fit in L2

▪ rarely accessed data

▪ archived processing results

Memory sections - remarks

In C programs:

▪ Globally declared variables (in main code, outside functions)
and static variables – in .bss.

▪ Local variables, declared inside functions (including main)
– in .stack.

▪ Dynamically created variables (with malloc) – in.sysmem.

▪ Constants (e.g. filter coefficients) – in .const.

Practical implications:

▪ do not declare large buffers inside functions
– the stack is small, and it may overflow

▪ constant data, such as filter coefficients, should be declared
as const.

Stack overflow

Stack overflow occurs when memory allocation for a variable
on the stack goes outside of a stack space.

Used stack

Free stack

Used data memory

Free data memory

Large buffer
allocated on
the stack

Overflow!

Stack overflow

What happens when a stack overflow occurs?

▪ On a desktop OS (e.g. Windows), the program crashes.

▪ There is no protection on a DSP! The memory is overwritten
without notice. What may happen:

– if the overwritten memory section was unused,
the program continues normally (for now),

– if data were stored in this section, they are lost;
the program can hang, or it may continue, but generate
incorrect results!

▪ It’s very hard to debug stack overflow errors.

▪ Therefore, it’s best to use the rule: all buffers (tables) are
declared in the main program section, not inside functions!

Direct memory access

▪ Signal samples that are received by the interfaces must be
written to memory.

▪ DMA (direct memory access) – interfaces have direct access
to the memory, without the processor.

▪ Data are transferred to/from memory without executing any
code by the processor, they do not use processor cycles.

▪ The program executes much faster, it is not blocked by
the interfaces.

▪ Almost all DSPs use DMA.

Direct memory access

Program

Memory

instructions

and

secondary

data

CPU

Data

Memory

data only
Instruction

Cache

I/O

Controller

(DMA)

PM address bus DM address bus

PM data bus DM data bus

PM Data

Address

Generator

DM Data

Address

Generator

Program Sequencer

Data

Registers

Multiplier

ALU

Shifter High speed I/O

(serial, parallel,

ADC, DAC, etc.)

Interrupts

How should a program know that new data are available?

▪ Polling – continuously checking for new data

– uses processor cycles for checking

– introduces delays

▪ Interrupts – a better approach:

– when the DMA controller writes new data to memory,
it generates an interrupt – an informational message

– a programmer writes an interrupt handling procedure
that is called when new data are available

– interrupts have higher priority than a normal code
– they interrupt program execution

– lower delays, no processor cycles are wasted

Remarks on a C compiler (1)

▪ Each variable type takes a defined number of bytes,
e.g. float typically uses 4 bytes.

▪ Variable address is an integer that defines the position
of a variable in memory.

▪ Alignment – requirement that the address is divisible
by the type size (float: by 4).

▪ In some cases (dual operations), alignment requires that
the address is divisible by 2 × type size (float: by 8).

▪ Alignment is often a requirement from a compiler
to generate an optimized code.

Remarks on a C compiler (1)

Alignment must be forced by using compiler pragmas.

Example for a TI processor – alignment to 8 bytes:

#pragma DATA_ALIGN(buffer, 8);
int buffer[8192];

Remarks on a C compiler (2)

▪ We want to generate code for a loop using dual MAC
– two MACs in each loop iteration.

▪ By default, compiler usually won’t do that, because it doesn’t
know if all the conditions are fulfilled:

– a loop will be executed even number of times,

– the loop won’t break at some point,

– there is no overlap of buffers in memory.

▪ Therefore, the compiler plays safe (according to Murphy’s
law) and it generates suboptimal code.

▪ If we write program in Assembler, we have full control over
the code and we can optimize it ourselves.

Remarks on a C compiler (2)

Again, we have to use pragmas to inform the compiler:

▪ how many times the loop will iterate (MUST_ITERATE),

▪ how to unroll the loop (UNROLL),

▪ that buffers do not overlap (restrict)

Example (TI processor):

void vecmul(int* restrict y, int* restrict a,
int* restrict b, int n)

{
int i;
#pragma MUST_ITERATE(2,,2)
#pragma UNROLL(2)
for (i = 0; i < n; i++)

y[i] = a[i] * b[i];
}

Remarks on a C compiler (conclusion)

▪ In Assembler, we can generate optimal code, but it’s our duty
to ensure that it works correctly.

▪ The C compiler must ensure that the program always works
correctly, even if it works slower. In case of any “risk”,
optimizations are disabled.

▪ A programmer must use “magic pragmas” to inform
the compiler that the code can be optimized.

▪ However, in many cases, the compiler decides that it knows
better ☺. It doesn’t generate the code we want.

▪ In such cases, we can only write the code in Assembler
(or maybe the compiler is right?).

