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Digital signal processor

Our definition:

digital signal processor (DSP)

is a chipset specialized in optimal processing of digital signal 
samples, performing repeated operations on each sample.

In this lecture we will answer the question:

which features of a digital signal processor architecture allow for 
optimal processing of digital signals, better than a CPU?



Main features of DSP architecture

The most important features of DSP architecture, that separate 
them from general purpose processors, are:

▪ Harward architecture,

▪ pipelining,

▪ circular addressing,

▪ special instructions (MAC, vectorization, etc.).



DSP components

The most important components of a DSP:

▪ ALU – arithmetic-logic unit, operations: + – AND OR NOT XOR

▪ multiplier (*)

▪ FPU – floating point processing unit

▪ registers – memory cells holding data on which the processor 
operates,

▪ accumulator – a special register which holds intermediate 
results of the operations,

▪ address generator

▪ buses – lines for data exchange between registers 
and memory.



Performing operations

Example calculations in a program:

y = 0.5 * a + 0.3 * b + 0.2 * c

A typical sequence of operations on a processor:

▪ read data from memory (a, b, c, constants), write them 
to registers,

▪ execute operations (* * + * +), save intermediate results 
in the accumulator,

▪ copy the result to the memory (y).



Accumulator

▪ Accumulator is a special register which holds results of most 
arithmetic and logic operations.

▪ On a 16-bit processor, multiplication of two 16-bit numbers 
yields a 32-bit result, so the accumulator must be at least 
32 bits long.

▪ When the intermediate results are accumulated, the number 
can exceed 32 bits.

▪ Therefore, the accumulator has additional “guard bits”.

▪ On 16-bit processors, the accumulator can be 40-bit long.

▪ A programmer can write to and read from registers, 
including the accumulator.



Processor architectures

▪ von Neumann architecture

– common memory for program and data,

– used in general-purpose CPUs, e.g. in PC.

▪ Harward architecture

– separate memory for program and data,

– independent access to each memory,

– used e.g. in DSPs.

▪ Harward architecture extensions in DSPs:

– dual memory access (dual data buses),

– instruction cache,

– input/output controller.



Processor architectures
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Block diagram of a DSP
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Processor cycles

▪ Processor is controlled by a clock, frequency of which is set 
by a phase-locked loop (PLL) circuit.

▪ Each clock pulse starts a processor cycle.

▪ Each program instruction requires one or more cycles.

▪ Clock frequency determines the number of cycles available 
per second for program execution. For example, a 100 MHz 
clock means 100 million cycles per second.

▪ For an audio signal sampled with 48 kHz, we have 2083 cycles 
to process one sample.



Instruction execution

Execution of a single instruction may be divided into stages:

▪ F (fetch) – get the instruction from memory or cache,

▪ D (decode) – decode the instruction

▪ E (execute) – run the instruction

▪ A (access) – open the memory

▪ S (store) – write the result to memory

Often, only F, D, E stages are considered.



Sequential processing

In sequential processing, a new instruction can be started only 
after the previous one has completed.
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Pipelining

Pipelining is performed as follows.

▪ First stage (F) of the first instruction is performed.

▪ When the processor proceeds to the second stage (D),
the first stage (F) of another instruction is started.

▪ Instruction stages are performed with overlapping, 
which speeds up the program execution.

▪ Pipelining is used on digital signal processors.

▪ Conflict cases (hazards), such as jump to another instruction 
in the code, break the pipeline, result in reverting partially 
performed instructions and restarting the pipeline.



Pipelining
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Linear buffer

A common case in digital signal processing (e.g. FFT filter).

▪ N latest samples are processed.

▪ Samples are stored in a buffer in memory.

▪ A new sample arrives:

– the oldest sample is removed,

– the remaining samples are shifted by one position,

– a new sample is written at the end of the buffer.

▪ This is a linear buffer.

▪ Processor cycles are wasted for moving samples in memory.



Circular buffer

▪ A circular buffer may be visualized as a ring.

▪ Pointer (index) indicates the current write position 
(the oldest sample).

▪ A new sample is written at the pointer.

▪ The pointer is advanced to the next position.

▪ No data is moved, the other samples remain in position.
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Circular addressing

▪ In practice, the circular buffer is implemented as a normal 
linear buffer and a pointer (index).

▪ The pointer is moved, it indicates the order in which the 
samples are processed.

▪ Once the pointer reaches the buffer end, it wraps 
to the beginning.

▪ A linear buffer in memory uses circular addressing.

▪ Digital signal processors have circular addressing 
implemented in hardware.



Circular and linear buffer – an illustration
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Circular addressing

On a standard CPU, we have to wrap the pointer manually.

buffer[index] = new_sample; // write
// … do the processing
index = index + 1; // advance the index
if (index == N) // end of buffer

index = 0; // wrap index

On DSP, we use circular addressing

▪ in Assembler – by turning on the circular mode,

▪ in C – by using a special instruction (intrinsic):

buffer[index] = new_sample; // write
// … do the processing
index = _circ_incr(index, 1, N) // advance the index

// with wrapping



MAC

▪ A common operation is signal processing: multiply numbers 
and accumulate the results

y ← y + a * x

▪ MAC = multiply and accumulate.

▪ On a standard CPU, we must do multiplication and addition 
separately.

▪ Signal processors have MAC implemented in hardware,
as a single processor instruction.

▪ This reduces the number of used cycles and speeds up 
program execution.

▪ Many modern DSPs can do two MAC operations at the same 
time (dual MAC).



MAC in practice

Standard CPU:

for (i = 0; i < N; i++) {
result += buffer[index] * coeff[index];
index = index + 1;
if (index == N) index = 0;

}

DSP with MAC

for (i = 0; i < N; i++) {
result = _smac(result, buffer[index], coeff[index]);
index = _circ_incr(index, 1, N);

}



SIMD (vectorization)

▪ Another common case: multiplication of two vectors.

▪ Requires N multiplications (N = vector length).

▪ Floating point numbers may be written with single (4 bytes) 
or double (8 bytes) precision.

▪ A processor can multiply two 4B or two 8B numbers.

▪ Two 4B numbers can be packed into one 8B number.

▪ One 8B multiplication instead of two 4B multiplications.

▪ The number of multiplications is reduced to N/2.

▪ This is vectorization, or SIMD (single instruction, multiple 
data) – the same operations on different data.

▪ CPUs also allow vectorization (SSE extensions).



Vectorization – an example

Without vectorization:

for (i = 0; i < N; i++) {
y[i] = a[i] * b[i];

}

With vectorization – more code, less operations:

for (i = 0; i < N; i+=2) {
_amem8_f2(&y[i]) = 

_dmpysp(_amem8_f2(&a[i]), _amem8_f2(&b[i]));
}



Memory organization

DSP memory is divided physically and logically into several levels. 
Each successive level has slower access time.

▪ L1 – cache memory, on DSP

– for internal use of the processor.

▪ L2 – DSP internal memory (on chip)

– can be used by a programmer (program and data),

– usually small (e.g. 1 MB).

▪ L3 – external memory (off chip)

– a separate memory module, e.g. DDR3

– much slower than L2 but can be bigger (GBs).

ROM memory, often flashable – program and constants.



SARAM and DARAM

▪ SARAM (single access random access memory)
– a standard memory, one memory read or write at a time.

▪ DARAM (dual access RAM) – dual data bus, two operations 
at a time (two writes, two reads or read + write).

▪ On a DSP: the whole memory may be DARAM, or part 
of memory may be DARAM and the rest is SARAM.

▪ Memory is divided into banks (pages) – concurrent access 
to different banks.

▪ A programmer must consider which data to put into DARAM 
and which may be in SARAM.



Memory map

▪ A memory map is specific for a DSP model, it is determined 
by the manufacturer.

▪ Each memory area is assigned to a range of addresses.

▪ Address is a number which determines the position 
in memory.

▪ A memory map assigns the logical addresses to physical 
memory sections.

▪ It is required in each DSP program – the compiler must 
have it to compile a program.



Memory map

An example of a memory map, from C5535 documentation:



Memory map

An example of memory map definition (C5535):

MEMORY

{

PAGE 0:  /* ---- Unified Program/Data Address Space ---- */

MMR    (RWIX): origin = 0x000000, length = 0x0000c0  /* MMRs */

DARAM0 (RWIX): origin = 0x0000c0, length = 0x00ff40  /*  64KB - MMRs */

SARAM0 (RWIX): origin = 0x010000, length = 0x010000  /*  64KB */

SARAM1 (RWIX): origin = 0x020000, length = 0x020000  /* 128KB */

SARAM2 (RWIX): origin = 0x040000, length = 0x00FE00  /*  64KB */

VECS   (RWIX): origin = 0x04FE00, length = 0x000200  /*  512B */

PDROM   (RIX): origin = 0xff8000, length = 0x008000  /*  32KB */

PAGE 2:  /* -------- 64K-word I/O Address Space -------- */

IOPORT (RWI) : origin = 0x000000, length = 0x020000

}



Memory sections

Logical memory sections are assigned to addresses.

The main sections of a compiled program are:

▪ .text – program code

▪ .stack – stack (locally declared variables)

▪ .data – initialized variables

▪ .bss – global and static variables

▪ .const – constants

▪ .sysmem – stack (dynamically allocated memory)

A programmer may create custom sections.



Memory sections

An example of memory sections definition for a compiler (C5535):

SECTIONS

{

.text     >> SARAM1|SARAM2|SARAM0  /* Code                        */

.stack    >  DARAM0                /* Primary system stack        */

.sysstack >  DARAM0                /* Secondary system stack      */

.data     >> DARAM0|SARAM0|SARAM1  /* Initialized vars            */

.bss      >> DARAM0|SARAM0|SARAM1  /* Global & static vars        */

.const    >> DARAM0|SARAM0|SARAM1  /* Constant data               */

.sysmem   >  DARAM0|SARAM0|SARAM1  /* Dynamic memory (malloc)     */

.switch   >  SARAM2                /* Switch statement tables     */

.cinit    >  SARAM2                /* Auto-initialization tables  */

.pinit    >  SARAM2                /* Initialization fn tables    */

.cio      >  SARAM2                /* C I/O buffers               */

.args     >  SARAM2                /* Arguments to main()         */

vectors  >  VECS                  /* Interrupt vectors           */

.ioport   >  IOPORT PAGE 2         /* Global & static ioport vars */

.fftcode  >  SARAM0                /* Custom sections */

.input    >  DARAM0, align(4)

}



Using sections in C code

This is how we can create a buffer in DARAM or SARAM, 
in a default .bss section:

#pragma DATA_SECTION(bufor, "ddr");
int buffer[8192];

If we declare an external memory in a memory map:

.ddr > DDR3

we can create a buffer in DDR memory using a compiler pragma
(example for a TI processor):

int buffer[8192];



Internal and external memory

Which data in internal L2 memory (DARAM/SARAM)?

▪ program code, stack, heap

▪ most variables

▪ buffers that are often accessed

Which data in external L3 memory?

▪ large buffers that don’t fit in L2

▪ rarely accessed data

▪ archived processing results



Memory sections - remarks

In C programs:

▪ Globally declared variables (in main code, outside functions) 
and static variables – in .bss.

▪ Local variables, declared inside functions (including main) 
– in .stack.

▪ Dynamically created variables (with malloc) – in.sysmem.

▪ Constants (e.g. filter coefficients) – in .const.

Practical implications:

▪ do not declare large buffers inside functions 
– the stack is small, and it may overflow

▪ constant data, such as filter coefficients, should be declared 
as const.



Stack overflow

Stack overflow occurs when memory allocation for a variable 
on the stack goes outside of a stack space.
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Stack overflow

What happens when a stack overflow occurs?

▪ On a desktop OS (e.g. Windows), the program crashes.

▪ There is no protection on a DSP! The memory is overwritten 
without notice. What may happen:

– if the overwritten memory section was unused, 
the program continues normally (for now),

– if data were stored in this section, they are lost; 
the program can hang, or it may continue, but generate 
incorrect results!

▪ It’s very hard to debug stack overflow errors.

▪ Therefore, it’s best to use the rule: all buffers (tables) are 
declared in the main program section, not inside functions!



Direct memory access

▪ Signal samples that are received by the interfaces must be 
written to memory.

▪ DMA (direct memory access) – interfaces have direct access 
to the memory, without the processor.

▪ Data are transferred to/from memory without executing any 
code by the processor, they do not use processor cycles.

▪ The program executes much faster, it is not blocked by 
the interfaces.

▪ Almost all DSPs use DMA.



Direct memory access
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Interrupts

How should a program know that new data are available?

▪ Polling – continuously checking for new data

– uses processor cycles for checking

– introduces delays

▪ Interrupts – a better approach:

– when the DMA controller writes new data to memory, 
it generates an interrupt – an informational message

– a programmer writes an interrupt handling procedure 
that is called when new data are available

– interrupts have higher priority than a normal code 
– they interrupt program execution

– lower delays, no processor cycles are wasted



Remarks on a C compiler (1)

▪ Each variable type takes a defined number of bytes, 
e.g. float typically uses 4 bytes.

▪ Variable address is an integer that defines the position 
of a variable in memory.

▪ Alignment – requirement that the address is divisible 
by the type size (float: by 4).

▪ In some cases (dual operations), alignment requires that 
the address is divisible by 2 × type size (float: by 8).

▪ Alignment is often a requirement from a compiler 
to generate an optimized code.



Remarks on a C compiler (1)

Alignment must be forced by using compiler pragmas.

Example for a TI processor – alignment to 8 bytes:

#pragma DATA_ALIGN(buffer, 8);
int buffer[8192];



Remarks on a C compiler (2)

▪ We want to generate code for a loop using dual MAC 
– two MACs in each loop iteration.

▪ By default, compiler usually won’t do that, because it doesn’t 
know if all the conditions are fulfilled:

– a loop will be executed even number of times,

– the loop won’t break at some point,

– there is no overlap of buffers in memory.

▪ Therefore, the compiler plays safe (according to Murphy’s 
law) and it generates suboptimal code. 

▪ If we write program in Assembler, we have full control over 
the code and we can optimize it ourselves.



Remarks on a C compiler (2)

Again, we have to use pragmas to inform the compiler:

▪ how many times the loop will iterate (MUST_ITERATE),

▪ how to unroll the loop (UNROLL),

▪ that buffers do not overlap (restrict)

Example (TI processor):

void vecmul(int* restrict y, int* restrict a, 
int* restrict b, int n) 

{
int i;
#pragma MUST_ITERATE(2,,2)
#pragma UNROLL(2)
for (i = 0; i < n; i++)

y[i] = a[i] * b[i];
}



Remarks on a C compiler (conclusion)

▪ In Assembler, we can generate optimal code, but it’s our duty 
to ensure that it works correctly.

▪ The C compiler must ensure that the program always works 
correctly, even if it works slower. In case of any “risk”, 
optimizations are disabled.

▪ A programmer must use “magic pragmas” to inform 
the compiler that the code can be optimized.

▪ However, in many cases, the compiler decides that it knows 
better ☺. It doesn’t generate the code we want.

▪ In such cases, we can only write the code in Assembler 
(or maybe the compiler is right?).


