
OPERATING SYSTEMS

OF DIGITAL SIGNAL

PROCESSORS

Applications of signal processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems

Programming without OS

▪ Simple DSP programs do not need an operating system.

▪ Such a program runs programmed operations sequentially.

▪ This method of programming is called bare metal
- directly on a processor.

▪ There is a drawback: if a program waits for data, it cannot
perform any operations (this is I/O blocking).

▪ For more complex programs, this is not optimal: available
processing time is turned into idle time and wasted.

Input/output operations

▪ Input/output (I/O) operations: getting data from inputs,
sending results to the output.

▪ Waiting for data causes the program to stop.

▪ It is problematic when the program gets the data from
multiple inputs.

▪ We want to do computation while waiting for new data.

▪ The solution: dividing the program into threads.

▪ An operating system is needed to manage (“govern”) threads.

▪ On DSPs, the operating system is usually provided by
the manufacturer, OS code is merged with the program.

Program and threads

▪ Program – the complete code of operations performed
on a DSP. One DSP (or one DSP core) = one program.

▪ Thread – a separated section of the program.

▪ A program can have multiple threads.

▪ This is called multithreading or concurrency.

▪ Threads compete for resources: processor cycles, memory.

▪ Operating system (OS) on a DSP: the main thread that
manages other threads and their access to the resources.

Example threads

Thread 1 – reads data:

▪ reads data, e.g. from
a sensor,

▪ passes data to thread 2,

▪ sleeps, waiting for new
data.

Thread 2 – processes data:

▪ gets data from thread 1,

▪ processes data and sends
the result to the output,

▪ sleeps, waiting for new
data.

Concurrency and parallelism

These terms are often mixed.

Concurrency:

▪ there are multiple threads,

▪ the number of active threads that are running is ≤ number
of available processors/cores,

▪ a DSP with a single core: one thread is running, the rest
is sleeping.

Parallelism:

▪ multiple threads are running at the same time,

▪ requires multiple DSPs or a multicore DSP.

Types of multitasking

Cooperative multitasking:

▪ a thread must stop so that another thread can start,

▪ used in programs in which the programmer has full control
on all threads,

▪ sometimes used in embedded systems.

Preemptive multitasking:

▪ an operating system manages the threads,

▪ any thread may be stopped (preempted) by the OS
at any time, so that another thread can run,

▪ more efficient in terms of resource usage,

▪ used on PCs and in most DSP programs.

Context switch

▪ Context – a running thread and resources it uses.

▪ Context switch – the running thread is stopped and
the resources are assigned to another thread.

▪ Priority – a number that determines hierarchy of threads.

▪ A context switch usually occurs when:

– a thread goes to sleep, waiting for data, and yielding
the resources voluntarily,

– a higher priority thread demands resources, so the
currently running, lower priority thread is stopped
(preempted).

Memory conflicts

Threads compete for resources which may cause conflicts.
An example of a conflict situation:

Thread 2 (lower priority):

▪ reads the first part
of a buffer in memory

▪ preempted by Thread 1

▪ (waits)

▪ resumes execution

▪ reads the second part
of a buffer in memory
- the content is garbled!

Thread 1 (higher priority):

▪ (sleeps)

▪ wakes up

▪ writes new data to memory

▪ goes to sleep

▪ (sleeps)

Mutex

▪ Mutex is an object that allows for an exclusive access
to memory by a thread.

▪ A thread that wants access to shared resources must obtain
the mutex and lock it.

▪ If a mutex is locked by another thread, the first thread must
wait, or it can perform other operations while waiting.

▪ Mutex must be unlocked after the operations are completed.

▪ Critical section – a section of code protected by a mutex,
which must be executed completely by a single thread.

▪ Mutexes slow down program execution, so they should be
used only if needed.

Mutex – an example

Thread 2:

▪ …

▪ waits for the mutex

▪ locks the mutex

▪ writes new data to buffer

▪ unlocks the mutex

Thread 1:

▪ locks the mutex

▪ reads the buffer

▪ unlocks the mutex

Semaphore

▪ Semaphore is an object that allows access to limited
resources from multiple threads.

▪ A semaphore has a counter.

▪ Locking a semaphore decreases the counter by 1, unlocking
increases the counter by 1.

▪ Access to the protected resource is not possible when
the counter is zero.

▪ An example: there are 5 buffers in memory

– current counter: 1 (four buffers are already taken)

– thread #1 takes the last buffer, the counter is 0

– thread #2 cannot take the buffer, it must wait until
another thread releases the buffer and the counter is 1.

Queue

▪ Threads must pass data between them.

▪ Queue is a structure that allows putting and getting data.

▪ A typical scheme is “producer-consumer”:

– one thread (the producer) generates data (e.g. gets them
from the input) and puts them in the queue,

– another thread (the consumer) gets data from the queue
and processes them.

▪ A queue is usually protected with an internal mutex.

▪ Data cannot be put into the queue if it is already full.

Queue example

Thread 2 (consumer):

▪ gets data from queue

▪ waits if the queue is empty

▪ processes the data

Thread 1 (producer):

▪ reads input data

▪ puts data into queue

▪ waits for new data

Optymalizacja kolejek

▪ A programmer should balance execution time of threads.

▪ A queue should never be full or empty.

▪ If a queue is written to more often that it is read:
overflow occurs, data may be lost.

▪ If a queue is read more often than it is written:
underrun (starvation) occurs, processor cycles are wasted.

Events

▪ Events are notifications sent to other threads.

▪ Usually, they notify a thread that new data are available.

▪ Event may be “on” or “off”.

▪ A thread may go to sleep and it may be woken up
by an event that is “on”.

▪ When a thread receives the event, it should turn off
that event.

▪ Events eliminate the need for polling – active checking
for data availability.

Interrupts

▪ Hardware interrupt is a notification generated by hardware,
e.g. when an interface receives new data.

▪ A thread that is assigned to a given interrupt, handles that
interrupt (it is called automatically).

▪ Software interrupts may be generated by a programmer.

▪ Interrupts have higher priority than threads, so interrupt
handling stops other threads.

▪ Non-maskable interrupts (NMI) cannot be turned off
(for example: RESET signal).

Deadlock

This case must not happen:

Thread 2:

▪ locks mutex_B

▪ waits for mutex_A

Thread 1:

▪ locks mutex_A

▪ waits for mutex_B

▪ Both threads wait for resources that cannot be obtained,
because they remain locked.

▪ This is an example of a deadlock.

▪ Usually, a deadlock hangs the program.

Concurrent programming problems

▪ It is said that concurrent programs are non-deterministic,
because the results of their execution depend on the order
of instructions from different threads and the time of context
switching.

▪ Race – a successful acquisition of resources depends on
whether a thread is faster than another thread.

▪ The order of executed instructions may be different each time
the program is run.

▪ Deadlock may occur e.g. every 20th run of the program.

▪ Debugging concurrent programs is very hard.

▪ The programmer must reduce the risk of all conflicts.

Operating systems on DSP

Example – Texas Instruments processors

▪ Real-time operating system, under various names:
DSP/BIOS, SYS/BIOS, TI-RTOS.

▪ Allows for execution of multithread programs
on a single-core DSP.

▪ Provides means of thread synchronization.

▪ The OS is merged with the signal processing code into
a single executable program.

Terms

DSP/BIOS and SYS/BIOS use the following terms.

▪ Interrupt – a thread that handles interrupts.

▪ Task – a thread that processes data.

▪ Idle loop – a lowest priority thread that runs I background
only if no other thread is active.

▪ Semaphore – semaphore, Gate – mutex.

▪ Mailbox – a structure for exchanging messages between
threads.

▪ Queue – a structure for data exchange between threads.

▪ Memory section manager – a module that manages
dynamically allocated memory.

▪ Pipe, stream – data exchange between interfaces
and memory, through DMA.

Example of thread management

Threads for handling hardware (hwi) and software (SWI)
interrupts and data processing threads (Tsk).

OS on hybrid processors

▪ Hybrid DSPs – composed from ARM and DSP cores.

▪ Example: TI Keystone C66x+ARM.

▪ Processing on hybrid OS uses the master-slave paradigm.

▪ The ARM cores run the operating system:

– special OS for the processor (e.g. TI-RTOS),

– or Linux with real-time kernel (e.g. Yocto).

▪ Program on ARM cores: master, passes data to slaves
and collects the results.

▪ Program on DSP cores: slave, performs the processing.

▪ Queues are used to exchange data between master
and slaves.

OS on hybrid processors

Example: processing of a camera video. Each DSP core processes
a piece of the image.

Processor
(Master)

RtspServerMjpegReader

Slave
DSP0 – DSP7

kamera
AXIS odtwarzacz

RTSP

Keystone II DSP

Keystone II ARM

Processor
(Master)

RtspServerMjpegReader

Slave
DSP0 – DSP7

kamera
AXIS odtwarzacz

RTSP

Keystone II DSP

Keystone II ARM

OS on hybrid processors

Data exchange with queues

DSP1

core_task

DSP0

core_task

DSP2

core_task

DSP3

core_task

DSP5

core_task

DSP4

core_task

DSP6

core_task

DSP7

core_taskDDR_MEM_MGMT

Processor

Memory
Manager

MjpegBuffer

co
re

0
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
0

co
re

1
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
1

co
re

2
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
2

co
re

3
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
3

co
re

4
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
4

co
re

5
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
5

co
re

6
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
6

co
re

7
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
7

Image
Buffer

S
L
A
V
E
_
D

D
R

M
A
S
T
E
R

_
D

D
R

Keystone II DSP

Keystone II ARM

DSP1

core_task

DSP0

core_task

DSP2

core_task

DSP3

core_task

DSP5

core_task

DSP4

core_task

DSP6

core_task

DSP7

core_taskDDR_MEM_MGMT

Processor

Memory
Manager

MjpegBuffer

co
re

0
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
0

co
re

0
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
0

co
re

1
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
1

co
re

1
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
1

co
re

2
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
2

co
re

2
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
2

co
re

3
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
3

co
re

3
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
3

co
re

4
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
4

co
re

4
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
4

co
re

5
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
5

co
re

5
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
5

co
re

6
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
6

co
re

6
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
6

co
re

7
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
7

co
re

7
_
q
u
e
u
e

m
a
ste

r_
q
u
e
u
e
_
7

Image
Buffer

S
L
A
V
E
_
D

D
R

M
A
S
T
E
R

_
D

D
R

Keystone II DSP

Keystone II ARM

Summary

▪ Simple DSP programs, such as the one written in the course
project, do not need an OS, bare metal is enough.

▪ If a program spends too much time waiting for data and there
is not enough cycles for processing – an OS is needed.

▪ Concurrent programming is much more difficult than writing
standard programs, many things can go wrong.

▪ Dividing the processing into threads must be carefully
planned.

▪ The operating system manages threads for a programmer.

▪ Hybrid DSP+ARM processors have potentially better
efficiency and flexibility, but the processing overhead is
higher, and the programming is more difficult.

