Applications of signal processors

Piotr Odya pioodya@pg.edu.pl Department of Multimedia Systems

Signal processors in hearing aids (but not only)

Introduction

- typical use: hearing aids
 - typical construction
- small dimensions
 - the device must fit in the ear canal
- Iow power consumption
 - the device should work for many hours
- easy programming of device parameters

Hearing aid - construction

Toccata Plus processor

- dimensions: 5.97 x 3.48 x 1.52 mm (with built-in EEPROM)
- power consumption: 400µA
- system clock frequencies: 1.28MHz, 1.92, 2.56MHz (theoretically from 640kHz to 3.84MHz)
- sampling frequencies up to 4okHz (theoretically up to 6okHz)
- supply voltage: 1.2V
- Built-in WOLA coprocessor (*Weighted Overlap-Add*) responsible for the implementation of Fourier's transformation
- Additional 10-bit LSAD (*Low-Speed Analog-Digital*) converter with typical sampling rate: 1.6kHz
- Programming only in assembler

Sampling frequencies

ADC_CTRL_SAMPLE_FREQ	MCLK=640 kHz SYS_CLK= n*MCLK	MCLK=1.28 MHz SYS_CLK= n*MCLK	MCLK=1.92 MHz SYS_CLK= n*MCLK	MCLK=2.56 MHz SYS_CLK= n*MCLK	MCLK=3.84 MHz SYS_CLK= n*MCLK
0x0	10000	20000	30000	40000	60000
0x1	8888.889	17777.78	26666.67	35555.56	53333.33
0x2	8000	16000	24000	32000	48000
0x3	7272.727	14545.45	21818.18	29090.91	43636.36
0x4	6666.667	13333.33	20000	26666.67	40000
0x5	6153.846	12307.69	18461.54	24615.38	36923.08
0x6	5714.286	11428.57	17142.86	22857.14	34285.71
0x7	5333.333	10666.67	16000	21333.33	32000

Block diagram

Internal schematic diagram

Typical hearing aid schematic

Evaluation board

Input stage

- Two 16-bit sigma-delta oversampling A/D converters
- Two configurable preamplifiers for improved input dynamic range matching
- Two configurable analog 3rd-order anti-aliasing filters
- Two 9th-order low-delay wave digital filters (WDFs) for decimation and DC removal with

Input stage

Output stage

- Two 16-bit sigma-delta oversampling D/A converters
- Two analog outputs
- Two configurable output attenuators for improved output dynamic range matching
- Two configurable analog 3rd-order anti-aliasing filters
- Two pulse-density modulation (PDM)-based direct digital drive outputs
 - eliminates the need for additional amplifiers when using passive speakers (receivers)
 - works as a Class D amplifier

Output stage

RCore DSP

- Dual-Harvard architecture, 16-bit programmable fixedpoint DSP with three execution units
- A single-cycle multiply-accumulate (MAC) with 40-bit accumulator
- Support for time-domain preprocessing of the input data stream and frequency-domain processing of WOLA output
- Master control functionality for the entire system

Weighted Overlap-Add (WOLA) filterbank coprocessor

- Block floating-point calculations (2-bit exponent, 16-bit mantissa) to achieve high fidelity
- A standard library of overlap-add (OLA) and weighted overlap-add (WOLA) filterbank configurations:
 - Configurable number of frequency bands
 - Configurable oversampling and decimation factors
 - Configurable windows
- Low group delay (< 4 ms for 16 bands possible)</p>
- Fast real and complex gain application for magnitude and phase processing

IOP Processor

IOP –Input/Output Processor

 Block-based DMA for all audio data, for automatic management of input and output FIFOs that reduces processor overhead

Memory Architecture

Frequency domain analysis

- Analysis: converts the time domain data to frequency domain. This function is performed in the WOLA coprocessor.
- Gain calculation: calculates coefficients and parameters based on the generated bands by the analysis filterbank. This function is performed by the RCore processor.
- Gain application: multiplies the input bands by the data calculated from the gain calculation process. It is performed be the WOLA coprocessor.
- Synthesis: converts the modified frequency bands back to the time domain. This function is performed by the WOLA coprocessor.
- The RCore also has access to the time-domain samples before and after a WOLA time-frequency transform and controls the WOLA coprocessor.

Examples of applications

- Hearing aid in a spectacle temple
- Subminiature Digital Speech Aid
- Digital Larynx
- Auditory training

Hearing aid in a spectacle temple

Spectacle frame

 Complete hearing aid mounted in the spectacle temple: Contact Star EVO1 (BHM company)

Konstrukcja

Problems

- the manufacturer assumed the use of Gennum Corporation's DSP GA3216 processor
- it was necessary to adapt the electronics of the hearing aid circuit to the Toccata Plus

Subminiature Digital Speech Aid

Stuttering

- the number of stuttering persons ranges from approx.
 0.5% to 1% of the population
- conventional therapy methods are not efficient
- the main reason of stuttering are auditory feedback loop disorders
 - change of this loop can help people who stutter

Auditory feedback loop modifications

- it is possible to add modifications in the auditory feedback loop
- MAF Masked Auditory Feedback
- DAF Delayed Auditory Feedback
- FAF Frequency Altered Feedback

Digital Speech Aid (DSA)

- designed at the Gdansk University of Technology in cooperation with the Canadian Dalhousie University
- developed in the early gos.
- uses DAF and FAF algorithms

SDSA - assumptions

- the patient uses only one device in one ear
 - the second ear can receive sounds without processing
- use of common speech correction algorithms: DAF, FAF, DAF+FAF
 - and new, more complex algorithms
- additional algorithms (for sound enhancement)
 - dynamic processing (e.g. compressor)
 - equalizer (16 bands)
 - battery monitor
 - voice key

Subminiature Digital Speech Aid

clock frequency: 1.92MHz;

- at 1.28MHz, FAF applications worked incorrectly, it was necessary to perform too many calculations in relation to the capabilities of the processor clocked at that frequency
- sampling rate: 16kHz;
- WOLA processor parameters
 - work on data blocks of 8 samples,
 - the length of the analysis window is 128 samples,
 - FFT length: 32,
 - oversampling and decimation factors equal to 4.

Sound processing

Algorithms

DAF

- buffers located in X and Y memory
- maximum delay: 3200 samples
 - at 16kHz sampl. freq. -> 400ms

FAF

- one buffer with two independent indexes (reading and writing) is used
 - it is located in X memory
 - length: 1024 samples

FAF algorithms

PC software

- Algorithms and their parameters can be changed employing special software and hardware
 - presets based on experiments results

Current consumption

Algorithm	TYPICAL CURRENT CONSUMPTION [µA]	MAXIMUM CURRENT		
Modified DAF algorithm (no delay, no additional algorithms, clock frequency 1.28MHz)	200			
Modified DAF algorithm (no delay, no additional algorithms, clock frequency 1.92MHz)	230			
Modified DAF algorithm (no delay, EQ and dynamic processing, clock frequency 1.92MHz)	310	800		
Typical DAF algorithm	330			
Typical FAF algorithm	320			
Delay modulation algorithm	330			
Reverberation algorithm	330			

Digital Artificial Larynx (DAL)

Artificial larynx

- produced speech is monotonous and very artificial
- speech intelligibility is poor (about 60%)
- the major problem is a background noise
- construction has been almost unchanged since 1950's

Digital Artificial Larynx

 it is possible to reduce the level of noise and improve the quality of the speech generated by use of digital signal processing

Digital Artificial Larynx

Schemat blokowy:

Spectral subtraction

problems

- noise and speech signals have the same excitation source and consequently are strongly correlated for voiced sounds
- noise spectrum has to be estimated from the signal recorded while the speaker keeps his lips closed
- patients must keep the lips closed during the first second after the switching the DAL on

Spectral subtraction

- Parameters of the processor employed are as follows:
 - System clock frequency: 1.28MHz;
 - Sampling frequency: 10.7kHz;
 - Subbands number: 64 (128 points FFT);
 - Frequency resolution is equal to about 83Hz.

Comb Filtering

- less complex algorithm
- spectral characteristic of the filter allows for the precise elimination of maxima of the background noise caused by the device
- main advantage: patient is not required to keep lips closed to obtain the noise sample in order to calculate its spectrum

Comb filtering

Acoustic feedback elimination

- acoustic feedback serious problem
 - small distance between the microphone and the loudspeaker (about 15-20cm)
- tested solutions
 - notch filter
 - delay modulation
 - spectral transposition

Acoustic feedback elimination

- notch filter
 - impossible to include any adaptive feedback cancellation algorithm
 - insufficient computational efficiency of the employed processor
- delay modulation
 - introduces small changes in the pitch of the produced speech signal
 - modulation signal is a sine wave
 - period of the modulation wave is equal to 1.5 s, average delay is about 30-35 ms and a range of delay changes is set to +/-4 ms
- spectral transposition
 - similar to the FAF (Frequency Altered Feedback) method used in applications for stuttering
 - amount of transposition is set to 6% of octave down the frequency scale

Preliminary tests

- patients were accustomed to speaking immediately after switching the device and in a consequence the speech generated using the spectral subtraction algorithm has bad quality
- patients did not want to use the delay modulation algorithm. Even tough the speech is generated artificially, patients evaluated that it sounded unnaturally to their ears
- the best results were obtained while patients were using the comb filtering algorithm with spectral transposition.

Auditory training

Aim

 Development of a small size device that allows the use of various audio processing algorithms

Block diagram

Prototype

Algorithms

- sound processing algorithms changed by
 - Low-Speed Analog-Digital converter built-in Toccata processor
 - switch (SW2)
- switchable signal source (MP3/microphone)
 - switch SW1

Parameters

processor

- system clock frequency: 2,56MHz
- sampling frequency: 29kHz
- bandwidth: ok. 14kHz
- FFT: 32 points

current consumption of the entire unit: 2.5mA

Other solutions

Other processors

https://www.onsemi.com/products/audio-video-assp/audio-dsp-systems

Select 2	Product ©	Low Power & High-Resolution Audio Processing System 151 for Portable Sound Solutions	Date Sheet	Pricing (SrUmit) C Budgetary price \$7,405	Compliance British & All Listing British Teo Britisher		Status •	DSP Core	Coprocessor \$ Type	MIPS \$	Dynamic C Range (dB)	RAM C (KB)	Notivestiny 🗘 Typi (LIA)	Autio C inputs	Audio 🗘 Outputs	Patkage C Type
					•	0	Attist and	32		170				2	2	WLC5P-120
	O LC7868208	Compressed Audio Signal Processor IC with USB Host Controller			٢	0	Product Proview	24	ă.	164	E.	325	÷	Analog x3. Digital x3	Analog stereo x1, Analog mono x1, Digital x1	PQEP-100 / QIP-1005
۵	O LC7868238	Compressed Audio Signal Processor IC with USB Host Controller and Bluetosch			0	0	Product Preview	24		96	22	320	17	Analog x3, Digitel x3	Analog stereo x1, Avalog moto x1, Digital x1	PQF8-100 / QIP-1906
	O BELASIGNA 200	Single-Origi Audio Processing System	B		0	0	Active	16	WOLA	40	83	42	250	2	2	WLCSP-40
	O BELASIGNA 300	24 bit Audia Processor for Portable Communication Destras				0	Active	34	HEAR		310		60		2	WLCSP-35
	O BELASIGNA R262	Wideband Voice Capeure and Noise Reduction SolC	A		0	0	Active	16	WOLK	60	88	12.	40	2	2	W1.CSP-26
	BELASIGNA #281	Alwaya-Lastering, Voice Trigger Audio DSP System			0	0	Acove	16	NOLA	60	23	6.1	176	3	0	WLCSP-31
	O TAN3852	Microphone Pre-Amplifier with Digital Output		\$0.1733	•	0	Active									WLCSP-6
	O 10783280AW	Speech Processing LSI	A	\$6.5332	0	8	Active	32		-6	211		10	2	2	SPQPP-647 SQPP-64
۵	01003425	Audia 151 fai Portable Sound Solution, Low Power		\$10,4904	0	0	Active	32	2	110		512		2	2	LFBGA-221 / FBGA-221) TQFP-128 / TQFP-128L
		Audia Processing System LSI for MPS Record and Playback Devices			0	0	Active	32	2	60		246		2	2	TQFP-128 / TQFP-128L
п	O LO823450	Low Power & High-Resolution Audio Processing System-on-Chip (SoC)		\$10,5997	٢	G	Active	32	8	160 0	25	1656	ī.	2	2	LFBGA243 11x11, 0.85P TQFP-1287 TQFP-1287 W0 (58-154

Belasigna 200 processor

Completely different application

use of radar sensors to detect people in pre-defined zones of coverage and measure their vital signs such as heart rate and breathing rate

Center to center distance 36"

Thank you for attention

The End