
DIGITAL FILTERS
on signal processors

Applications of digital processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems



Introduction

▪ Digital filters are basic algorithms that are implemented 
on digital signal processors.

▪ Two types of digital filters are used:

• finite impulse response – FIR (“convolutional”),

• infinite impulse response – IIR (recursive).

▪ Both types are used in practice.

▪ Theory on FIR and IIR filters was presented in the Sound and 
image processing course lecture and it will not be repeated 
here.



FIR filters

Digital finite impulse response (FIR) filters:

▪ the latest N signal samples (x) are multiplied by the filter
coefficients (b),

▪ the results of multiplication are summed up and sent 
to the filter output (y).
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FIR filter design

▪ We decide on the filter response (e.g. lowpass), cut-off 
frequency (e.g. 4 kHz), minimum attenuation (e.g. 40 dB), 
width of the transition band (or filter length).

▪ We compute (floating point) filter coefficients using software 
(Matlab, Python/SciPy), using one of available methods 
(windowing, Parks-McClellan).

▪ We check the filter gain in the passband – it should be close 
to one. We normalize the filter gain if needed 
(for lowpass filters: we divide the coefficients by the sum 
of all coefficients).



Filter coefficients on a fixed-point DSP

▪ The filter coefficients are calculated as floating-point 
numbers.

▪ If we use a fixed-point DSP, the coefficients must be 
quantized and written in Q15 format.

▪ We multiply the coefficients by 32768 and round them.

▪ We need to check the gain. If the gain exceeds the range 
(for low-pass filter: sum of coefficients exceeds 32767), 
we need to reduce the gain. For example, we can multiply 
the coefficients by a lower number, e.g. 32760.



Quantization of coefficients

▪ When we convert the coefficients to Q15, we perform 
quantization – we use the nearest value that has 
a representation in the Q15 format.

▪ A difference between real and quantized values has a form 
of a quantization noise.

▪ We get slightly different filter than the designed one.

▪ In floating-point DSPs,
the quantization effect is still
present, but it has much lower
influence on the results.



Filter coefficients in C code

▪ Coefficients are written in a const array.

▪ The array is declared globally (outside of functions).

▪ If we have several filters, a good practice is declaring 
their coefficients in a separate file that is #included.

▪ Example for a fixed-point DSP (the number of coefficients is 
#defined as a number N for convenience):

#define N 30
const int lp_filter[] = {-4, 39, 97, 149, 133, -23, -337, -701, 
-883, -595, 360, 1955, 3883, 5634, 6677, 6677, 5634, 3883, 1955, 
360, -595, -883, -701, -337, -23, 133, 149, 97, 39, -4};



FIR filter implementation

In practice, we use optimized filter implementations provided 
by the DSP maker. We will write our own FIR algorithm in C,
for demonstration purposes.

▪ We need to store the latest N signal samples in memory.

▪ We use a circular buffer.

▪ The buffer is declared globally.

▪ We need an index (a global variable) that points at the write 
position (the oldest sample) in the buffer:

int filter_buffer[N];

int buffer_index = 0;



FIR filter implementation

▪ We need to fill the filter buffer with zeros:

▪ We write a new signal sample into the buffer.

▪ We need to iterate over the buffer, multiply the samples 
by the filter coefficients and sum up the results.

▪ We need a second index (pos) to read from the buffer.

▪ We move the index with _circ_incr function.

▪ Multiplication and accumulation is performed with _smac.

int i;
for (i = 0; i < N; i++)

filter_buffer[i] = 0;



FIR filter implementation

// x: the current signal sample (int)
filter_buffer[buffer_index] = x;
int pos = buffer_index; // index of buffer read
long y = 0;  // y: filter result

// loop over the coefficients and samples
for (i = 0; i < N; i++) {

// y = y + x[n]*h[n]
y = _smac(y, filter_buffer[pos], lp_filter[i]);
pos = _circ_incr(pos, -1, N); // pos = pos - 1

}

// result: a sample sent to the filter output (int)
result = (int)(_sround(y) >> 16);
// update the buffer write index (b_i = b_i + 1)
buffer_index = _circ_incr(buffer_index, 1, N);



FIR filter symmetry

▪ Usually, we design linear phase FIR filters, their impulse 
response (coefficients) is symmetric:

• odd length filters (type I) – two symmetrical halves and 
one unpaired central coefficient,

• even length filters (type II, only low-pass and band-stop): 
two symmetrical halves.

▪ We can use the symmetry to reduce the number 
of multiplications: we add two samples and multiply 
the result by one coefficient.

▪ Only the non-repeating part of the coefficients must be 
stored in the memory.



FIR filter symmetry

const int lp_filter[] = {15, 58, 109, 135, 68, -151, -493, -796, 
-788, -201, 1076, 2884, 4798, 6263, 6812, 6263, 4798, 2884, 
1076, -201, -788, -796, -493, -151, 68, 135, 109, 58, 15};

const int lp_filter[] = {15, 58, 109, 135, 68, -151, -493, -796, 
-788, -201, 1076, 2884, 4798, 6263, 6812};



Range overflow problem

▪ When we add two samples in Q15, range overflow may 
occur:

▪ We can divide the samples by two (>>1) before adding:

▪ We must compensate the final result (<<1).

▪ We lose one bit of precision (gaining computation speed).

int sumsamp = _sadd(buffer[pos1], buffer[pos2]);

int sumsamp = _sadd(buffer[pos1]>>1, buffer[pos2]>>1);



Implementation of a symmetric FIR filter

// we need two buffer read indices
int pos1 = buffer_index; // the latest sample
int pos2 = _circ_incr(pos1, 1, N); // the oldest sample
int sumsamp;
long result = 0;

for (i = 0; i < (N>>1); i++) {
sumsamp = _sadd(buffer[pos1]>>1, buffer[pos2]>>1);
result = _smac(result, sumsamp, lp_filter[i]);
pos1 = _circ_incr(pos1, -1, N); // index goes back
pos2 = _circ_incr(pos2,  1, N); // index goes forward

}
// the middle coefficient (if N is odd)
if (N & 1) // N is odd

result = _smac(result, buffer[pos1]>>1, lp_filter[i]);

// here we compensate the division by 2:
output = (int)(_sround(result<<1) >> 16);
buffer_index = _circ_incr(buffer_index, 1, N);



FIR filters in DSPLIB

▪ DSPLIB contains optimized filtering algorithms for DSPs from 
Texas Instruments. For fixed-point DSPs: in Assembler.

▪ The most important FIR functions (DSPLIB for C55x):

• fir – standard implementation,

• fir2 – optimized for dual MAC mode, requires specific 
buffer alignment in memory,

• firs – for even-length symmetric filters.

▪ Separate functions for special filters (Hilbert, decimation, 
interpolation, ladder).



fir function in DSPLIB

▪ The documentation describes the function header:

▪ DATA is an alias of int (16-bit).

▪ Asterisk (*) denotes a pointer:

• for arrays (buffers): their name is a pointer,

• for “scalar” variables, we must take the pointer by putting 
& before the variable name.

▪ The circular buffer must be created in global memory and 
filled with zeros. It cannot be modified in the program!

▪ The returned oflag is 1 if the overflow occurred.



fir function in DSPLIB

▪ x – pointer to input samples. For one sample: e.g. &input

▪ h – pointer to filter coefficients vector; we need to cast it to 
(DATA*) to remove const: (DATA*)LP_filter

▪ r – pointer to the output samples buffer. For one sample: 
e.g. &output

▪ dbuffer – pointer to a circular buffer that we created
(length: nh+2).

▪ nx – number of processed samples.

▪ nh – number of filter coefficients.



fir function in DSPLIB

Declaration of the circular buffer (globally):

Filtering one sample (we ignore the returned flag):

#define N 30 // number of coefficients
DATA fir_buffer[N+2]; // circular buffer
const int filtr_dp[] = {...} // filter coefficients

fir(&input, (DATA*)lp_filter, &output, fir_buffer, 1, N);



Block processing with FIR filters

▪ Sometimes it is more convenient to filter a block of samples 
instead of each sample separately.

▪ We can use fir function from DSPLIB (time domain filtering).

▪ For longer filters it is faster to use convolution in the spectral 
domain.

▪ The results from all blocks are merged with overlap-add
(OLA) or overlap-save (OLS) algorithm.

▪ This approach was presented in the Sound and image 
processing course lecture. It is based on FFT, as presented 
in the previous lecture.



IIR filters

Infinite impulse response (IIR) – the second type of digital filters.

▪ Recursive filters – require N+1 latest signal samples
and N previous filtering results.

▪ Example for a second order filter (a biquad):
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Quantization of IIR filter coefficients

▪ The coefficients are computed with a software.

▪ A problem: one coefficient (a1) is outside the [-1, 1) range. 
How can we write it in a fixed-point notation?

▪ There is no other way than give away one bit of precision 
and write the value in Q1.14, multiplying the floating-point 
values by 16384.

▪ We should check the gain and the stability of the filter.

0.0039, 0.0078, 0.0039, -1.8153, 0.8310

const int iir[] = {64, 128, 64, -29743, 13615};
//                 b0,  b1, b2,     a1,    a2



Quantization of IIR filter coefficients

▪ Quantization noise also occurs in IIR filters.

▪ Noisy filtering results are used to process the following 
samples! The noise effects accumulates.

▪ Quantization noise increases with the filter order.

▪ Possible problems: range overflow and filter instability.



Cascade form

▪ To reduce the quantization noise, IIR filters are designed 
in a cascade form: as second order sections (SOS, biquads).

▪ In a floating-point implementation, construction of sections 
is not relevant.

▪ In a fixed-point implementation, assigning filter zeros and 
poles to sections may decide whether range overflow occurs 
or not.

▪ Building an optimal cascade structure for a fixed-point IIR 
implementation is a complex task.



What can go wrong?

Two undesirable effects may occur.

▪ Range overflow

• the output of the filter is a wideband noise instead 
of a filtered signal,

• it happens when at least one section has too large gain,

• solution: reduce the filter gain.

▪ Range underflow

• the output of the filter is all zeros,

• it happens when one or more sections have too small 
gain,

• solution: redistribute the filter gain among sections.



Filter design

▪ We compute filter coefficients in the cascade form (SOS) 
using software.

▪ For a fixed-point DSP, we convert coefficients to Q1.14.

▪ We check the gain of each section and of the whole filter. 
All gains should be similar, none should exceed 1. We modify 
the gain if needed (by scaling the coefficients b).

▪ We test stability of the quantized filter.

▪ Coefficients are stored in the program code.



IIR filters in DSPLIB

▪ From many IIR functions in DSPBLIB, the most useful one is 
iircas51:

▪ Cascade form (cas) of a direct form I (1), 
5 coefficients per section.

▪ Software usually calculates 6 coefficients per section. 
We omit the fourth coefficient (a0), it is always 1.

▪ Direct form II is not recommended for fixed-point processors, 
it is more susceptible for range overflow.



IIR filters in DSPLIB

▪ x – pointer to the input sample (&sample) 
or to buffer of input samples (buffer_in)

▪ h – pointer to filter coefficients, in order:
b0, b1, b2, a1, a2; section by section (without a0!)

▪ r – pointer to the output sample (&result) 
or to the buffer of output samples (buffer_out)

▪ dbuffer – buffer of length (4 * number of sections + 1), 
we need to create the buffer and fill it with zeros,

▪ nbiq – number of second order sections,

▪ nx – number of samples to process (e.g. 1).



IIR filters in DSPLIB

▪ Function iircas51 assumes Q15 format. If the coefficients are 
Q1.14, the result after each section is two times too small.

▪ We can compensate the value at the output, but 
the underflow may occur, and we lose precision.

▪ Modified code (provided in the project template) 
– we compensate this effect after each section.



IIR filters in DSPLIB

Declaration of coefficients (4 sections) and the work buffer

WARNING: we omit a0 coefficient!

Filtering the sample in input and writing the result to output:

const int iir_filter[] = {
62,    124,     62,  -28801,  12665
63,    126,     63,  -29307,  13176
65,    131,     65,  -30291,  14168
68,    137,     68,  -31681,  15570};

int buffer[17]; // remember to fill it with zeros!

iircas51(&input, (DATA*)iir_filter, &output, buffer, 4, 1);



Summary – FIR filters on DSP

From the point of view of DSP implementation:

▪ FIR filters require significantly more multiplications and 
additions than IIR filters to achieve the same result.

▪ Features of DSPs allow for fast FIR filter implementation:

• instructions: MAC, dual MAC, FIRLS, etc.,

• fast loop execution without overhead,

• special addressing modes, e.g. circular addressing.

▪ Therefore, FIR filters are usually the first choice in modern 
DSP applications.

▪ For “long” filters it is recommended to use spectral 
convolution (OLA algorithm).



Summary – IIR filters on DSP

From the point of view of DSP implementation:

▪ IIR filters are more problematic than FIR filters:

• problem of dividing the filter into sections (overflow, 
underflow, instability),

• high quantization noise (inaccuracy of results).

▪ We should consider IIR filters when:

• available processor cycles and memory are limited
(for example, we run several filters),

• small processing delay is required (FIR filters introduce 
higher delay).

▪ We should also remember that IIR filters distort signal phase.


