
SIGNAL GENERATION
on digital signal processors

Applications of signal processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems

Introduction

▪ Usually, signal processors operate on signals
that are fed to its inputs.

▪ We can also use DSPs to generate signals.

▪ In this lecture, we will talk about:

• generating digital harmonic signals,

• generating a sine wave,

• generating pseudo-random signals (noise),

• generating signals by reading samples from memory,

• interpolation of samples stored in memory.

Sawtooth wave

▪ Harmonic signals: their spectrum consists of partials
at harmonic frequencies – multiples of the fundamental
frequency.

▪ Example: sawtooth wave.
Time and spectral plot:

Sawtooth wave

▪ Amplitude changes linearly.

▪ To generate the wave, we use an accumulator
– we sum up the consecutive amplitude steps.

▪ Initialization:

▪ For each sample, output y:

▪ What is the value of step?

int amplitude = 0;
const int step = ???;

y = amplitude;
amplitude = amplituda + step;

Calculating the amplitude step

▪ Let’s assume frequency 1 Hz (period 1 s), fs = 48 kHz.

▪ We need 48000 samples to change amplitude
from -32768 to 32768.

▪ Amplitude change per one sample is:

▪ And if we need 100 Hz (sample 0.01 s)?

...365333.1
48000

327682
=

=d

...5333.136
100/48000

327682
=

=d

Calculating the amplitude step

▪ For any frequency f, amplitude step as a Q15 number is:

d = round(f * 1.36533)

▪ For example: f = 440 Hz → d = 601

▪ If we need to compute this step in code:

▪ Remember that it’s not possible to write any frequency value
in a fixed-point notation.

() 1422368*
32768

223682

48000

65536
=

== fffd

Overflow in sawtooth generation

▪ Important: range overflow occurs when amplitude steps
are accumulated, for example:
32750 + 25 = „32775” = –32761

▪ Amplitude “wraps around”
- this is exactly what we need!

▪ It is one of rare cases in which
range overflow is actually useful.

Square / pulse wave

▪ Another harmonic signal: square or pulse wave.

▪ Signal amplitude changes between -A and +A.

▪ Pulse width: a ratio of duration of the positive part
to the wave period (0 to 1).

▪ Time and spectral plots for pulse width = 0.5:

Square / pulse wave

▪ Square wave may be calculated from the sawtooth wave:

▪ Value of threshold depends on the pulse width:
threshold = 2 * pulse_width – 1

▪ A regular square wave (50/50): threshold = 0.

if (amplitude < threshold)
y = 32767; // or another amplitude

else
y = -32768;

Aliasing problem

▪ Analog harmonic waves (such as square or sawtooth)
have infinite spectrum.

▪ If we try to generate these waves digitally “from definition”,
usually aliasing will occur.

▪ The problem increases for higher wave frequencies.

▪ The resulting signal is inharmonic.

Aliasing problem

There ware various method of generating alias-free waves.

▪ Generating waves with higher sampling frequency
(oversampling), then decimation.

▪ Using Fourier series. For example, sawtooth:

• for kf below Nyquist frequency,

• the signal is distorted in time domain (lack of high
frequency components).

()
()

=

−−=
N

k

k

k

fsknfAA
nx

1

/2sin
1

2
)(

Sine generation

▪ Phase of a sine wave looks like
a sawtooth wave.

▪ We know how to generate
a sawtooth wave. Now, we have
to convert phase (angle) into the amplitude.

▪ We can approximate the sine with Taylor series:

▪ Function sine from DSPLIB for C55x uses this method.

() ...
!9!7!5!3

sin
9753

−+−+−
xxxx

xx

▪ x – pointer to the buffer with phase (angle) values.
We generate a sawtooth wave of a desired frequency
and write its values to the buffer.

▪ r – pointer to the buffer in which values of a sine wave
will be stored.

▪ nx – number of samples to generate (buffer length).

Note that sine function does not generate a sine wave signal
by itself, it only computes sine values from given angles.

Sine wave generation with DSPLIB

Sine wave from IIR generator

▪ Alternative method of sine wave generation:
we use a marginally-stable second-order IIR system.

▪ We use an impulse to start the generator:
y(0) = –sin(2f/fs), y(1) = 0

▪ The system goes into
oscillations – generates
sine wave values.

▪ On a fixed-point DSP,
implementation is problematic
(insufficient numerical
precision).

)2()1()(−−−= nynyany

=

fs

f
a

2
cos2

White noise generation

▪ White noise – a random signal with flat spectrum.

▪ To generate a digital noise, we use (pseudo)random number
generators – RNG.

▪ Noise samples are computed by the algorithm.

▪ Example of a simple noise generation algorithm:
LCG – linear congruent generator:

mod – modulo, remainder of integer division by M

▪ For professional applications, such as cryptography,
more accurate algorithms are needed (e.g., Mersenne
Twister).

() Mbnyany mod1)(+−=

White noise generation

▪ Initial value y(0) is called a seed. Given the same seed,
the algorithm will always generate the same sequence
of pseudo-random numbers.

▪ In practice, we set the seed to a constantly changing value,
e.g., a counter of processor cycles.

▪ Example: a = 2045, b= 0, M = 220, y(0) = 12345.
Time and spectrum plots:

White noise generation in DSPLIB

▪ Initialization – just once, when the program starts:

▪ Writing nr samples into buffer r:

LCG: a = 31821, b = 13849, M = 65536

rand16init();

rand16(bufor, 2048);

Signal from a wavetable

▪ Any signal can be generated by reading its samples stored
in memory, in a wavetable (a buffer of samples).

▪ For example, we can store 480 samples of one period
of a sine wave.

▪ If we read them with speed of 48 kHz, we get a sine wave
of frequency 100 Hz.

▪ If we read every second sample, we have 240 samples
per period, therefore f = 48000 / 240 = 200 Hz

▪ If we loop the samples we read, we get a continuous wave.

▪ The problem: how can we generate any frequency?

Signal from a wavetable

▪ A general case: generating wave of any frequency.

▪ Step to move the read index in the wavetable:
s = f N / fs (N – number of samples in wavetable).

▪ For f = 456 Hz, N = 4800: s = 45.6

▪ Usually, step s is not an integer.

▪ So, we need to “read between samples”.

▪ Interpolation of samples: estimating values between samples
stored in the memory.

Linear interpolation

▪ The simplest interpolation is linear. We connect the known
samples with a straight line, and we look for a value
at a given position on the line.

▪ Let index = 45.6. We interpolate between samples
x[45] and x[46] – the previous and the next one.

n1 n2n

A1

A2

A

n2 – n1 = 1
1

1

12

12

nn

AA

nn

AA

−

−
=

−

−

))((1121 nnAAAA −−+=

 () 6.04546456.45 −+= xxxx

Reading samples with interpolation

// Example: index = 45.6
int index_c = 45; // integer part (45), int
int index_u = 19661; // fractional part (0.6), Q15

// Read samples from table
int a1 = buffer[index_c]; // the previous sample
int a2 = buffer[index_c+1]; // the next sample

// linear interpolation
long a = index_u * (long)(a2 – a1) // (n-n1)*(a2-a1)
a = (_sround(a<<1) >> 16) + a1 // + a1

// value of the interpolated sample
y = (int)a;

Other interpolation methods

▪ Linear interpolation is simple, but not accurate.

▪ More accurate methods:

• polynomial interpolation – of degree 2 (square),
3 (cubic) and higher degrees.

• interpolation with sin(x)/x functions (sinc interpolation):

Signal from a wavetable

▪ The more samples in the buffer, the better (lower
interpolation errors).

▪ We can store any signal in the wavetable.

▪ This methods works fine if we read and loop a wave period.

▪ If we do not loop, frequency change results in changing
the duration – the signal becomes shorter or longer.

▪ Interpolation of signals with complex spectrum, such as
square wave, may result in aliasing. Usually, we need to store
a number of wave versions of different frequencies
in the wavetable.

Signal from a wavetable

Reading a sound signal from table with different steps:

▪ step = 1:

• samples read with the original sampling frequency,

• sound pitch – the same as the original sampled sound;

▪ step < 1:

• we read samples more slowly – sound becomes longer

• the sound pitch is lower than the original;

▪ step > 1:

• we read samples quicker – sound becomes shorter

• the sound pitch is higher than the original.

Sampler

▪ A practical example: a sampler – digital musical instrument
that plays back sound samples stored in memory. Only
fragments of samples are looped, or they are not looped.

▪ A DSP in the sampler does transposition
- changes the pitch of generated sounds by altering
the step of memory read index and by interpolation.

▪ Temporal distortions occur
– the sound becomes longer or
shorter. Therefore, we need to use
a set of samples with different pitch
(multisampling).

