Applications of signal processors

SIGNAL GENERATION

on digital signal processors

Author: Grzegorz Szwoch

Gdansk University of Technology, Department of Multimedia Systems

Introduction

= Usually, signal processors operate on signals
that are fed to its inputs.

= We can also use DSPs to generate signals.

= |n this lecture, we will talk about:
* generating digital harmonic signals,
* generating a sine wave,
* generating pseudo-random signals (noise),
e generating signals by reading samples from memory,
* interpolation of samples stored in memory.

Sawtooth wave

= Harmonic signals: their spectrum consists of partials
at harmonic frequencies — multiples of the fundamental
frequency.

= Example: sawtooth wave.
Time and spectral plot:

8

Amplitud
o
o
Amplituda {dB)

s

o 500 1000 1500 2000 2500 0 S00 1000 1500 2000
Czas Crostotewose [Hz)

2500

Sawtooth wave

= Amplitude changes linearly.

= To generate the wave, we use an accumulator
— we sum up the consecutive amplitude steps.

= |nitialization:

int amplitude = 0;
const int step = ???;

= For each sample, output y:

y = amplitude;
amplitude = amplituda + step;

= What is the value of step?

Calculating the amplitude step

" Let’s assume frequency 1 Hz (period 1 s), fs = 48 kHz.

= We need 48000 samples to change amplitude
from -32768 to 32768.

= Amplitude change per one sample is:

ci::2'32768 —1.365333...
48000
= And if we need 100 Hz (sample 0.01 s)?
g 232708 1356333

48000 /100

Calculating the amplitude step

= For any frequency f, amplitude step as a Q15 number is:
d =round(f* 1.36533)
= For example: f=440 Hz —» d = 601

= |f we need to compute this step in code:

d = f O30 _ 222358 = (f *22368)>>14
48000 32768

= Remember that it’s not possible to write any frequency value
in a fixed-point notation.

Overflow in sawtooth generation

" |mportant: range overflow occurs when amplitude steps
are accumulated, for example:

32750 + 25 = ,,32775” =-32761 T

= Amplitude “wraps around”
- this is exactly what we need!

= |tis one of rare cases in which
range overflow is actually useful.

Square / pulse wave

= Another harmonic signal: square or pulse wave.

= Signal amplitude changes between -A and +A.

Pulse width: a ratio of duration of the positive part
to the wave period (0 to 1).

= Time and spectral plots for pulse width = 0.5:

500 300G 1500 2000 200] 500 * 300G 1500 2000 200
o

Ampituds
Arnphiud

Square / pulse wave

= Square wave may be calculated from the sawtooth wave:

if (amplitude < threshold)

y = 32767; // or another amplitude
else

y = -32768;

= Value of threshold depends on the pulse width:
threshold = 2 * pulse_width —1

= Aregular square wave (50/50): threshold = 0.

e r e

Aegette

bk o
£ |
E
|
|
1ol

-
—
8

Aliasing problem

= Analog harmonic waves (such as square or sawtooth)
have infinite spectrum.

4

= |f we try to generate these waves digitally “from definition”,
usually aliasing will occur.

= The problem increases for higher wave frequencies.

= The resulting signal is inharmonic.

=
E
E
E
=

‘MLJ"-’E'.JU :M MMJLMLW|.|.l',11|.

Aliasing problem

There ware various method of generating alias-free waves.

= Generating waves with higher sampling frequency
(oversampling), then decimation.

= Using Fourier series. For example, sawtooth:

N 5
x(n) = g_é (_1)k Sin (27zknf / fs)
T k=1 Kk

* for kf below Nyquist frequency,

* the signal is distorted in time domain (lack of high
frequency components).

Sine generation

= Phase of a sine wave looks like
a sawtooth wave.

= We know how to generate
a sawtooth wave. Now, we have
to convert phase (angle) into the amplitude.

= We can approximate the sine with Taylor series:

x> x> x' x°

sin(X)=x——+——"—+"——...
g 5 71 0Ol

= Function sine from DSPLIB for C55x uses this method.

Sine wave generation with DSPLIB

E I S

Function ushort oflag = sine (DATA *x, DATA *r, ushort nx)

= x — pointer to the buffer with phase (angle) values.

We generate a sawtooth wave of a desired frequency
and write its values to the buffer.

= r—pointer to the buffer in which values of a sine wave
will be stored.

= nx—number of samples to generate (buffer length).

Note that sine function does not generate a sine wave signal
by itself, it only computes sine values from given angles.

Sine wave from IIR generator

= Alternative method of sine wave generation:
we use a marginally-stable second-order IIR system.

= We use an impulse to start the generator:
y(0) = —sin(2nf/fs), y(1)=0

= The system goes into
oscillations — generates
sine wave values.

x[n] il 0 yin]

= On a fixed-point DSP,
implementation is problematic
(insufficient numerical
precision).

y2

=) =

[277 f]
a=2c0S| ——
y(n)=a-y(n-1)-y(n-2) fs

White noise generation

= White noise —a random signal with flat spectrum.

= To generate a digital noise, we use (pseudo)random number
generators — RNG.

= Noise samples are computed by the algorithm.

= Example of a simple noise generation algorithm:
LCG - linear congruent generator:

y(n)=[a-y(n-1)+b] mod M

mod — modulo, remainder of integer division by M

= For professional applications, such as cryptography,
more accurate algorithms are needed (e.g., Mersenne
Twister).

White noise generation

= |nitial value y(0) is called a seed. Given the same seed,
the algorithm will always generate the same sequence
of pseudo-random numbers.

" |n practice, we set the seed to a constantly changing value,
e.g., a counter of processor cycles.

= Example: a = 2045, b=0, M = 2%, y(0) = 12345.
Time and spectrum plots:

2000 - - - - -) - - - - — -

X000

Aerchrata
=
Acepitucs 48]

b |
a)
g
g 3,
8
g

White noise generation in DSPLIB

= |nitialization — just once, when the program starts:

randl6init();

= Writing nr samples into buffer r:

Random Number Generation Algorithm
Function ushort oflag= rand16 (DATA *r, ushort nr)

LCG: a = 31821, b = 13849, M = 65536

rand16(bufor, 2048);

Signal from a wavetable

= Any signal can be generated by reading its samples stored
in memory, in a wavetable (a buffer of samples).

= For example, we can store 480 samples of one period
of a sine wave.

= |f we read them with speed of 48 kHz, we get a sine wave
of frequency 100 Hz.

= |f we read every second sample, we have 240 samples
per period, therefore f = 48000 / 240 = 200 Hz

= |f we loop the samples we read, we get a continuous wave.

= The problem: how can we generate any frequency?

Signal from a wavetable

= A general case: generating wave of any frequency.

= Step to move the read index in the wavetable:
s=f-N/fs (N—number of samples in wavetable).

" Forf=456 Hz, N=4800:s=45.6
= Usually, step s is not an integer.
= So, we need to “read between samples”.

" |nterpolation of samples: estimating values between samples
stored in the memory.

Linear interpolation

The simplest interpolation is linear. We connect the known
samples with a straight line, and we look for a value
at a given position on the line.

Let index = 45.6. We interpolate between samples
x[45] and x[46] — the previous and the next one.

A-A_A-A

n,—n, n-n

A=A+(A-A)-n)

N, —Ny =

-

S \[45.6] x[45]+ (x{46] x[45])-0.6

Reading samples with interpolation

// Example: index = 45.6
int index_c = 45; // integer part (45), int
int index u = 19661; // fractional part (0.6), Q15

// Read samples from table
int al = buffer[index c]; // the previous sample
int a2 = buffer[index _c+1]; // the next sample

// linear interpolation
long a = index u * (long)(a2 - al) // (n-nl)*(a2-al)
a = (_sround(a<<l) >> 16) + al // + al

// value of the interpolated sample
y = (int)a;

Other interpolation methods

= Linear interpolation is simple, but not accurate.

= More accurate methods:

e polynomial interpolation — of degree 2 (square),
3 (cubic) and higher degrees.

* interpolation with sin(x)/x functions (sinc interpolation):

5 T T T

Signal from a wavetable

= The more samples in the buffer, the better (lower
interpolation errors).

= We can store any signal in the wavetable.
= This methods works fine if we read and loop a wave period.

= |f we do not loop, frequency change results in changing
the duration — the signal becomes shorter or longer.

" |nterpolation of signals with complex spectrum, such as
square wave, may result in aliasing. Usually, we need to store
a number of wave versions of different frequencies
in the wavetable.

Signal from a wavetable

Reading a sound signal from table with different steps:
= step=1:
* samples read with the original sampling frequency,
e sound pitch —the same as the original sampled sound;

= step< 1:
* we read samples more slowly — sound becomes longer

* the sound pitch is lower than the original;

= step > 1:
* we read samples quicker — sound becomes shorter
* the sound pitch is higher than the original.

Sampler

= A practical example: a sampler — digital musical instrument
that plays back sound samples stored in memory. Only
fragments of samples are looped, or they are not looped.

= A DSP in the sampler does transposition
- changes the pitch of generated sounds by altering
the step of memory read index and by interpolation.

= Temporal distortions occur
—the sound becomes longer or
shorter. Therefore, we need to use
a set of samples with different pitch
(multisampling).

