
ADVANCED DSP

ALGORITHMS
in Telecommunication

Applications of signal processors

Author: Grzegorz Szwoch

Gdańsk University of Technology, Department of Multimedia Systems

Introduction

Four algorithms selected from more advanced methods of digital
signal processing, for practical application in telecommunication
systems:

▪ signal resampling, decimation and interpolation;

▪ removal of changing distortion – adaptive filtering;

▪ frequency detection – autocorrelation;

▪ signal demodulation and envelope detection
- analytic signal and Hilbert transformer.

Signal resampling

PROBLEM #1: sampling frequency 48 kHz is too low
for our application.

▪ Oversampling – processing the signal with higher sampling
frequency than the target one.

▪ In audio processing, signals are often oversampled 4-times,
sampling frequency is 192 kHz.

▪ Drawback: more operations to perform; in signal
oversampled by a factor of 4, DSP has to perform 4 times
as much operations during the same time.

Decimation

▪ At the output, we need a signal sampled with 48 kHz.

▪ If we have fs = 192 kHz, we have 4 times too much samples.

▪ Let’s take every 4th sample. Now, we have the number
of samples we need.

▪ Before taking the samples, we need to process
the oversampled signal with a low-pass decimation filter,
with cut-off frequency equal to the target Nyquist frequency
(24 kHz in our example).

▪ If we don’t apply the filter, aliasing occurs.

Decimation

Decimation from fs1 to fs2 = fs1 / D:

▪ low-pass filter with fc = fs2 / 2,

▪ then take every D-th sample.

Example – generating a sawtooth wave f = 1 kHz:

4x oversampling with decimation No oversampling

Interpolation

▪ We have a signal sampled with 48 kHz.
How do we upsample it to 192 kHz?

▪ Let’s insert 3 zeros in between each pair of samples.

▪ We have the sufficient number of samples.

▪ Spectrum – almost correct. Almost.

Interpolation

Interpolation from fs1 to fs2 = fs1 * L:

▪ insert (L-1) zeros in between each pair of samples,

▪ process the signal with a low-pass filter with fc = fs1 / 2.

Example – sawtooth wave f = 1 kHz:

Resampling

▪ Problem #1A: we have a signal with fs1 = 44 100 Hz,
but we need fs2 = 48 000 Hz.

▪ Resampling: changing the sampling frequency
with a factor of (L/D) :

• insert (L-1) zeros in between each pair of samples,

• process with a low-pass filter (only one),

• take every D-th sample.

▪ L / D = 48000 / 44100 = 160 / 147
therefore: interpolation with L = 160
and decimation with D = 147.

DSPLIB functions

▪ Decimating filter:

▪ Interpolating filter:

Noise removal

PROBLEM #2

▪ A hands-free microphone/speaker system in a car.

▪ A microphone collects speech and noise from the car.

▪ If the noise was stationary, we would use a normal filter
to remove noise.

▪ It won’t work, because the noise is constantly changing.

▪ We need a filter that adapts to the changing noise.

Adaptive filters

▪ Adaptive filters – filters with coefficients calculated
by an algorithm.

▪ Reference signal: from the main microphone.

▪ Filtered signal: from another microphone that collects only
noise, not the speech.

▪ Error signal: difference between the filtered and
the reference signals.

▪ Adaptation of filter coefficients to minimize the filtering
error.

LMS algorithm

▪ LMS – Least mean squares.

▪ The algorithm tries to minimize energy of the error signal.

▪ The higher the error, the larger change to the filter
coefficients is needed.

▪ Adaptation of filter coefficients:

( - adaptation step – speed of adaptation)

)()()()1(neknxnwnw kk −+=+ 

Adaptive filters in DSPLIB

▪ x – input signal

▪ h – filter coefficients

▪ r – buffer for the filtered signal

▪ des – reference (desired) signal

▪ step – adaptation speed

▪ nh – number of filter coefficients

▪ nx – number of processed samples

Determining the sound pitch

PROBLEM #3:

▪ We have a recording of a musical instrument, such as
trumpet. We want to find its pitch on a musical scale.

▪ Musical sounds are quasi-periodic and harmonic.

▪ Quasi-period – duration of the shortest repeating fragment.

▪ Fundamental frequency – a reciprocal of a quasi-period,
determines the sound pitch on the musical scale, e.g., A4.

Determining the sound pitch with FFT

▪ A most obvious approach: we do the FFT and we look
for the first maximum.

▪ This method is not very reliable:

• it’s not always easy to find the base component
(it may not be the strongest one),

• low accuracy – depends on
the frequency resolution
of FFT,

• we can fit a parabola to
the peak, as described
in an earlier lecture.

f0 = 452.19 Hz

Autocorrelation

▪ Autocorrelation coefficient: a measure of similarity between
the signal and its copy shifted in time. Values [-1, 1],
value of zero means complete dissimilarity.

▪ Autocorrelation function: values of the coefficient calculated
for various time shifts (lags).

▪ We compute the autocorrelation coefficients, shifting
the signal by an increasing number of samples.

▪ Maximum of the function indicates the highest similarity
for a given lag.

▪ Therefore, the first non-zero maximum determines
the quasi-period, and thus the fundamental frequency.

Autocorrelation

Autocorrelation
coefficient r
for various
lags d

Sound pitch with autocorrelation

▪ The autocorrelation function plot shows maxima
for multiplies of the quasi-period.

▪ The first maximum at d = 100, therefore:
f0 = 44100 / 100 = 441 Hz

Autocorrelation

Another example: determining presence of speech in the signal.

▪ Speech is quasi-periodic, so there will be maxima
in the autocorrelation function.

▪ A noise is always uncorrelated – no maxima.

▪ Signal gating: we check how many autocorrelation values
in the buffer exceeds a threshold, and we decide:
“speech / no speech”.

Autocorrelation in DSPLIB

Autocorrelation can be also computed with FFT:

▪ we compute the spectrum (FFT),

▪ then we get a squared module of the spectrum,

▪ and we compute an inverse FFT (IFFT) from the squared
module which gives us the autocorrelation function.

Analysis of a compound signal

PROBLEM #4

▪ We have the following signal:

• a chirp (sweep) with linearly increasing frequency
from 20 Hz to 100 Hz,

• amplitude modulated: signal amplitude is multiplied
by a sine with f = 3 Hz.

▪ For any moment, we need to find:

• value of the signal envelope (the modulating sine),

• current frequency of the signal.

Analysis of a compound signal

This is how our signal looks:

▪ blue color – values of the signal,

▪ red color – signal envelope (the modulating sine 3 Hz).

Analytic signal

▪ Real signal has two copies of the spectrum from 0 to fs.

▪ Let’s remove the second copy, from fs/2 to fs.

▪ We have created a complex-valued signal,
called the analytic signal.

Signal envelope

What do we get from computing the analytic signal:

▪ absolute value of the analytic signal r(n):

is the envelope of the original signal
(only if the signal is symmetric).

() () ()22
)(Im)(Re nrnrny +=

Instantaneous frequency

▪ Phase of the analytic signal:

▪ Instantaneous frequency
= derivative of the phase:

()
()
() 









=

nr

nr
n

(Re

)(Im
arctan

() ())1()(
2

−−= nn
f

nf s 


Hilbert transformer in DSPLIB

▪ Algorithm that transforms the real signal into the analytic
signal is called a Hilbert transformer.

▪ It can be realized as a FIR filter, or with spectral processing
(FFT, removing one copy, IFFT).

▪ In DSPLIB:

Bonus - DTMF

▪ DTMF – Dual-Tone Multi Frequency

▪ A method of encoding digits, used in Telecommunication.

▪ Every sign is represented as a duotone – two sines selected
from 8 possible frequencies.

▪ For example, digit “6”:
770 Hz + 1477 Hz

▪ Used e.g. for selecting
the number in a phone
call.

Bonus - DTMF

„Homework” – please think about how to solve this problem.

We need to create a DTMF detector with DSP.

▪ Detecting the beginning and the end of each symbol:

• how to detect a digit, exactly once per symbol?

▪ Detection of the duotone frequencies:

• filters? FIR or IIR?

• FFT?

• maybe another method?

Similar, but more difficult problem: how to create a Morse code
detector with DSP?

