Applications of signal processors

ADVANCED DSP
ALGORITHMS

in Telecommunication

Author: Grzegorz Szwoch

Gdansk University of Technology, Department of Multimedia Systems

Introduction

Four algorithms selected from more advanced methods of digital
signal processing, for practical application in telecommunication
systems:

= signal resampling, decimation and interpolation;
= removal of changing distortion — adaptive filtering;
" frequency detection —autocorrelation;

= signal demodulation and envelope detection
- analytic signal and Hilbert transformer.

Signal resampling

PROBLEM #1: sampling frequency 48 kHz is too low
for our application.

= QOversampling — processing the signal with higher sampling
frequency than the target one.

" |n audio processing, signals are often oversampled 4-times,
sampling frequency is 192 kHz.

= Drawback: more operations to perform; in signal
oversampled by a factor of 4, DSP has to perform 4 times
as much operations during the same time.

Decimation

= At the output, we need a signal sampled with 48 kHz.
= |f we have fs =192 kHz, we have 4 times too much samples.

= Let’s take every 4" sample. Now, we have the number
of samples we need.

= Before taking the samples, we need to process
the oversampled signal with a low-pass decimation filter,
with cut-off frequency equal to the target Nyquist frequency
(24 kHz in our example).

= |f we don’t apply the filter, aliasing occurs.

Decimation

Decimation from fs1 to fs2 = fs1 / D:
= |ow-pass filter with fc = fs2 / 2,
= then take every D-th sample.

Example — generating a sawtooth wave f =1 kHz:

4x oversampling with decimation No oversampling

55

50

& & &
a &5 & 8 8

Ampliluda [d8)
=

Armpliluda [d5)
£

=
8 B

-
o

15

| H | | LLELAY =)
0 5000 10000 15000
Czgslolliwodd [Hz) Czgstotiwose [Hz]

5000 10000 15000 20000 10 LRI LA

-
<
o

Interpolation

= We have a signal sampled with 48 kHz.
How do we upsample it to 192 kHz?

" Let’s insert 3 zeros in between each pair of samples.
= We have the sufficient number of samples.

= Spectrum — almost correct. Almost.

5 & & &

a

Ampitudas [dB)
¥

=

::nmlllmu% l N“ , Hlmm.... .,.;wnillm..ﬂ

0 40000
Cizgslolliweds [H2]

Interpolation

Interpolation from fs1 to fs2 = fs1 * L:
" insert (L-1) zeros in between each pair of samples,

= process the signal with a low-pass filter with fc = fs1 / 2.

Example — sawtooth wave f =1 kHz:

55

0

&

5

Ampituda [dB)
b1

8

LMHI%

] b3
ppe——

Resampling

= Problem #1A: we have a signal with fs1 =44 100 Hz,
but we need fs2 = 48 000 Hz.

= Resampling: changing the sampling frequency
with a factor of (L/D) :
* insert (L-1) zeros in between each pair of samples,
* process with a low-pass filter (only one),
 take every D-th sample.
= [/D=48000/44100=160/147

therefore: interpolation with L = 160
and decimation with D = 147.

DSPLIB functions

= Decimating filter:

Decimating FIR Filter
Function ushort oflag = firdec (DATA *x, DATA *h, DATA *r, DATA *dbuffer , ushort nh,

ushort nx, ushort D)

" |nterpolating filter:

Interpolating FIR Filter
Function ushort oflag = firinterp (DATA *x, DATA *h, DATA *r, DATA *dbuffer , ushort nh,

ushort nx, ushort 1)

Noise removal

PROBLEM #2

= A hands-free microphone/speaker system in a car.
= A microphone collects speech and noise from the car.

= |f the noise was stationary, we would use a normal filter
to remove noise.

= |t won’t work, because the noise is constantly changing.

= We need a filter that adapts to the changing noise.

Adaptive filters

= Adaptive filters — filters with coefficients calculated
by an algorithm.

= Reference signal: from the main microphone.

= Filtered signal: from another microphone that collects only
noise, not the speech.

= Error signal: difference between the filtered and
the reference signals.

= Adaptation of filter coefficients to minimize the filtering
error.

Signd
Microphone !
I T |
LR Pl I o
nik) I
A
Hik)
r

LMS algorithm

LMS — Least mean squares.

The algorithm tries to minimize energy of the error signal.

= The higher the error, the larger change to the filter
coefficients is needed.

= Adaptation of filter coefficients:

w, (n+1) =w, (n)+ xx(n—k)e(n)

(1 - adaptation step — speed of adaptation)

Adaptive filters in DSPLIB

EEE ~captive Delayed LMS Filter

Function ushort oflag = dims (DATA *x, DATA *h, DATA *r, DATA *des, DATA *dbuffer,
DATA step, ushort nh, ushort nx)

= x—input signal

= h—filter coefficients

= r—buffer for the filtered signal

= des — reference (desired) signal

= step — adaptation speed

" nh—number of filter coefficients

= nx—number of processed samples

Determining the sound pitch

PROBLEM #3:

We have a recording of a musical instrument, such as
trumpet. We want to find its pitch on a musical scale.

Musical sounds are quasi-periodic and harmonic.

Quasi-period — duration of the shortest repeating fragment.

Fundamental frequency — a reciprocal of a quasi-period,
determines the sound pitch on the musical scale, e.g., A4.

30000

. \

: \ \”\f\/

Determining the sound pitch with FFT

= A most obvious approach: we do the FFT and we look

for the first maximum.

= This method is not very reliable:
* it’s not always easy to find the base component

(it may not be the strongest one),

* low accuracy —depends on
the frequency resolution

of FFT,

e we can fit a parabola to
the peak, as described
in an earlier lecture.

125

f,=452.19 Hz

4000

Autocorrelation

= Autocorrelation coefficient: a measure of similarity between
the signal and its copy shifted in time. Values [-1, 1],
value of zero means complete dissimilarity.

= Autocorrelation function: values of the coefficient calculated
for various time shifts (lags).

= We compute the autocorrelation coefficients, shifting
the signal by an increasing number of samples.

= Maximum of the function indicates the highest similarity
for a given lag.

= Therefore, the first non-zero maximum determines
the quasi-period, and thus the fundamental frequency.

Autocorrelation

Autocorrelation
Coefﬁcient r 30000 ’ d=3'0.r=-'0.02 : 30000 r d=§0.r=:0.31 :
. 20000 - 20000 |
for various
10000 |- 1 10000 ”
lags d 0 ol
-10000 -10000
-20000 | -20000 + “
30000 00200 300 400 500 %% 300 200 300 400 50
30000 ' d= ?0, r= 9.31 ' 30000 ' d= 1‘00, r =‘0.95 '
20000 |- 1 20000 |
10000 | N 10000 |
0 0
-10000 -10000
-20000 | -20000 }
-30000 -30000

0 100 200 300 400 500 0 100 200 300 400 500

Sound pitch with autocorrelation

= The autocorrelation function plot shows maxima
for multiplies of the quasi-period.

= The first maximum at d = 100, therefore:
f,=44100 /100 = 441 Hz

of ||

Autocorrelation

Another example: determining presence of speech in the signal.

= Speech is quasi-periodic, so there will be maxima
in the autocorrelation function.

= A noise is always uncorrelated — no maxima.

= Signal gating: we check how many autocorrelation values
in the buffer exceeds a threshold, and we decide:
“speech / no speech”.

Autocorrelation in DSPLIB

ECTR /(oconelaton

Function ushort oflag = acorr (DATA *x, DATA *r, ushort nx, ushort nr, type)

Autocorrelation can be also computed with FFT:
= we compute the spectrum (FFT),
= then we get a squared module of the spectrum,

= and we compute an inverse FFT (IFFT) from the squared
module which gives us the autocorrelation function.

Analysis of a compound signal

PROBLEM #4

= We have the following signal:

* a chirp (sweep) with linearly increasing frequency
from 20 Hz to 100 Hz,

* amplitude modulated: signal amplitude is multiplied
by a sine with f = 3 Hz.
= For any moment, we need to find:
 value of the signal envelope (the modulating sine),
e current frequency of the signal.

Analysis of a compound signal

This is how our signal looks:
= blue color — values of the signal,

= red color —signal envelope (the modulating sine 3 Hz).

06 08

Analytic signal

= Real signal has two copies of the spectrum from O to fs.
= Let’s remove the second copy, from fs/2 to fs.

= We have created a complex-valued signal,
called the analytic signal.

Sygnat rzeczywisty Sygnal analityczny

®# & & 8 8
®# & & B8 8

=

Ampituda {dB)
8

Amplituda {dB)

8 R

—
o

E
—
=

il

-
o
<

10000 20000 30000 40000 0 10000 20000 30000
Czostotewost [Hz} Czestotenost [Hz)

Signal envelope

What do we get from computing the analytic signal:

= absolute value of the analytic signal r(n):

y(n)=+/Re(r(n)) + Im(r(n)

is the envelope of the original signal
(only if the signal is symmetric).

Modul sygnalu analitycznego

15 -
>l

i T e I
T ORS8N)

\ i ””'l'lmul

Amplitud,

S o
o o o

Amplitud:

S o

o
g

AY

Instantaneous frequency

= Phase of the analytic signal:

-

Im(r(n))]

Re(r(n)

" |nstantaneous frequency
= derivative of the phase:

Pochodna fazy analitycznego

f(n)=

f

27

(p(n) —p(n-1))

Hilbert transformer in DSPLIB

= Algorithm that transforms the real signal into the analytic
signal is called a Hilbert transformer.

= |t can be realized as a FIR filter, or with spectral processing
(FFT, removing one copy, IFFT).

= |n DSPLIB:
hilb16 FIR Hilbert Transformer
Function ushort oflag = hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,

ushort nh)

Bonus - DTMF

= DTMF — Dual-Tone Multi Frequency
= A method of encoding digits, used in Telecommunication.

= Every sign is represented as a duotone — two sines selected
from 8 possible frequencies.

= For example, digit “6”:

High Group

/70 Hz + 1477 Hz 1209 1336 1477 1633 Hz

I [

= Used e.g. for selecting sori: — 1 213 Ha
the number in a phone .

3 770Hz 4 5 —| 6 B
call. :

= 852Hz — 7 8 9 C

941 Hz * 0 _I # -

Bonus - DTMF

,Homework” — please think about how to solve this problem.
We need to create a DTMF detector with DSP.

= Detecting the beginning and the end of each symbol:
* how to detect a digit, exactly once per symbol?

= Detection of the duotone frequencies:
* filters? FIR or IIR?
* FFT?
* maybe another method?

Similar, but more difficult problem: how to create a Morse code
detector with DSP?

