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Abstract

Elongated objects have various shapes and can shift, ro-
tate, change scale, and be rigid or deform by flexing, artic-
ulating, and vibrating, with examples as varied as a glass
bottle, a robotic arm, a surgical suture, a finger pair, a tram,
and a guitar string. This generally makes tracking of poses
of elongated objects very challenging.

We describe a unified, configurable framework for track-
ing the pose of elongated objects, which move in the im-
age plane and extend over the image region. Our method
strives for simplicity, versatility, and efficiency. The object
is decomposed into a chained assembly of segments of mul-
tiple parts that are arranged under a hierarchy of tailored
spatio-temporal constraints. In this hierarchy, segments
can rescale independently while their elasticity is controlled
with global orientations and local distances.

While the trend in tracking is to design complex,
structure-free algorithms that update object appearance on-
line, we show that our tracker, with the novel but remark-
ably simple, structured organization of parts with constant
appearance, reaches or improves state-of-the-art perfor-
mance. Most importantly, our model can be easily config-
ured to track exact pose of arbitrary, elongated objects in
the image plane. The tracker can run up to 100 fps on a
desktop PC, yet the computation time scales linearly with
the number of object parts. To our knowledge, this is the
first approach to generic tracking of elongated objects.

1. Introduction
Elongated objects constitute a large, general class of

structures that extend over image regions. They can move
fast under varying illumination and occlusions, in clutter,
and deform in the camera projective space due to relaxed
rigidity or change in viewpoint. Yet, applications requiring
pose tracking of elongated objects are various and span, e.g.,
interactive video manipulation, telesurgery, gesture-based
control, activity recognition, and animation. Hence, track-
ing elongated objects is a challenging but important task.

Figure 1. Our goal is to track with one algorithm poses of plethora
of elongated objects varying in shape, motion, and rigidity. Our
approach decomposes an elongated object into a chained assembly
of segments of multiple parts that are arranged under a hierarchy of
tailored spatio-temporal constraints leveraging local rigidity over
object segments. As a result, we efficiently track elongated ob-
jects that can shift, rotate, change scale, and be rigid or deform by
flexing, articulating, and vibrating.

However, an algorithm that tracks precisely, robustly, and
rapidly a plethora of elongated objects varying in shape,
motion, and rigidity has not been proposed thus far.

Dedicated trackers have made significant progress in
specific, important areas (e.g., surface deformations of hu-
man face [36], articulating tree-based human pose [28]).
They can self-start but annotating training examples of all
possible objects for learning spatially structured models is
currently difficult. In contrast, structure-free, generic ap-
proaches, which are initialized simply by a single bounding-
box, can localize arbitrary objects that are rigid [19, 34], de-
form less [5, 22, 33, 41], or more [6, 12, 23]. They build
object appearance on-line but strive to be robust against
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object deformations and thus neglect or filter out its pose.
Arguably, the single bounding-box annotation scenario cur-
rently limits their applicability to elongated objects that oc-
cupy rather expanded image regions.

In view of this, the paper addresses a new problem of de-
veloping a generic system for pose-based tracking of elon-
gated objects, which we conformably define as chain-like
image structures. We position our approach between the
structured and structure-free trackers by treating elongated
objects as a structure of chained segments of parts with
fixed appearance. Existing computer vision techniques, a
pictorial structure, dynamic programming, and color his-
tograms, are integrated into a new but simple model, which
is composed of a hierarchy of spatio-temporal constraints
with global orientations over the chained segments, con-
tributing to model-based tracking. Notably, we introduce
a generic, model-based tracker that admits a simple, one-
shot configuration from annotated object parts in the first
frame. Apart from its computational efficiency, it also
tracks objects robustly against partial occlusions and lo-
cal appearance changes due to spatial support through part-
based structure and re-detects them after full occlusions due
to temporal support through fixed appearance. Our system
can be configured to efficiently estimate detailed pose tra-
jectories of elongated objects, as varied as a rigid glass bot-
tle, a flexing tram, a gesturing finger pair, an articulating
robotic arm, a deformable surgical suture, and a vibrating
guitar string, which extend over wider and very thin image
regions, as depicted in Fig. 1.

We achieve this within a MAP-MRF setting of pictorial
structures [10, 11] by developing a deformable model of
chained parts that efficiently leverages object local rigidity
over spatio-temporal domain. Specifically, the fixed appear-
ance of each square-like part is represented by a color his-
togram, which has low computational cost, is invariant to
scale change and to permutation of pixels. This means the
pixels can evolve freely within object parts during tracking,
so achieving robustness to rotation and to local deforma-
tions caused by moderate change in viewpoint. We then
maintain spatial appearance of the whole object by decom-
posing it into a chained assembly of segments of multiple
parts that are arranged under a hierarchy of tailored spatio-
temporal constraints. We reference each segment of parts
with an oriented polar coordinate system, effectively en-
forcing the spatial coherency of parts by promoting these
part configurations that conform to the preferred relative an-
gular deviations and distances over time.

Contributions: Our main contributions are: (i) a pose-
configurable system for generic tracking of elongated ob-
jects, modeled with a hierarchy of tailored spatio-temporal
constraints; (ii) demonstrating that a simple, structured or-
ganization of parts with fixed appearance leads to competi-
tive performance with respect to structure-free, state-of-the-

art methods that learn object appearance on-line. Our other
contribution is to devise the new task of generic tracking
of elongated objects having arbitrary shapes and motions.
We also contribute by demonstrating that even though pic-
torial structures are usually considered slow [17], we inte-
grate them into a hierarchical model that can register object
pose up to speeds far exceeding real-time.

2. Related work
We review related work on region and part-based track-

ers of object poses, and other chain-based assemblies repre-
senting elongated image structures.

Region-based tracking: The seminal work of [8] pro-
posed a mean-shift method that represented a non-rigid ob-
ject by a color histogram, modulated with an ellipsoidal ker-
nel. The tracker determined object location in real-time by
mean-shifting the kernel in the gradient-ascending direction
of the differentiated objective function. Owing to its sim-
plicity, robustness, and speed, it has been popular and has
evolved over the years [7, 14, 24]. In particular, [43] rep-
resents an elongated, rigid object by an asymmetric kernel
and determines its location, scale, and orientation. How-
ever, these algorithms search locally (except [39]) requiring
objects to move slowly. Also, they use a holistic appearance
template that loses spatial information, reduces their robust-
ness to occlusions [1], and renders them infeasible to track
objects that deform heavily. Possibly, these types of objects
may require a part-based approach [4].

Tracking by parts: Part-based trackers can represent
objects locally. Thus, they can learn fewer background pix-
els that otherwise compromise the performance of holistic,
bounding-box trackers [12]. However, they differ much
in the mechanisms for assembling and matching the parts
in the spatio-temporal domain [6]. For instance, parts de-
scribed by fixed, gray histograms voted for object location
in [1]. A human body was localized in [38] with several
parts that were aggregated by greedy coverage of the fore-
ground binary mask, obtained by graph-cuts. Kernels of
parts were jointly mean-shifted in [9] to follow object de-
formations but required precomputing the subspace over
their possible displacements on initial series of images to
guide their joint convergence. Particle filtering [16] was
used in [29] for probabilistic matching of several parts, de-
fined by color histograms, which improved stability over
the holistic template. The parts were linked rigidly, though,
for efficient inference. Their unconstrained flexibility was
then granted in [26] but through multi-stage, disjoint infer-
ence. Particle filters scale exponentially with the dimen-
sionality of the search space, thus with the number of parts,
and are approximative. On the other hand, the prominent
pictorial structures [10, 11] have been used extensively in
object tracking by approximating complete graphs with star
graphs [3, 31] and with other tree graph extensions [42, 44].



The graphs are trained off-line for specific objects, but can
explain heavy foreshortening [35] and scale linearly with
object parts.

We aim at an efficient and precise framework to track
elongated objects that can vary in number of parts by sev-
eral orders of magnitude. In our setting, the primary advan-
tage over particle filter and other pictorial structure trackers
is that our tracker can render the global solution without
approximative inference nor approximative object structure
and its joint inference scales linearly with the number of
parts. A chain-based pictorial structure thus appears natu-
ral to track elongated regions, and our approach generalizes
to such structures of arbitrary rigidity in a computationally
efficient manner.

Chain structures: Our proposal allows us to draw
analogies to very influential snakes models of image con-
tours [21], which can represent image structures with a
chain graph [2, 15]. Snakes actively adapt to previously
unseen contours to delineate object segments for shape reg-
istration. This is attractive, but they struggle on cluttered
areas [37], so [32] uses region support. Essentially though,
snakes use iterative matching methods with local search,
thus additionally struggling with fast object displacements.
Our work is also related in approach to [17, 40] that use a
chained pictorial structure, and loosely related to [20] that
iteratively infers on a dense graph by evaluating an ensem-
ble of chains. However, [40] tracks non-deformable objects
that shift and rotate, [20] requires a large set of training ex-
amples, and [17, 20] track object keypoints by filtering out
object pose. Our approach generalizes to arbitrary, elon-
gated objects (e.g., curved) that shift, rotate, change scale,
and undergo constrained or heavy deformations. It also
learns object structure over region support with one-shot an-
notation, registers object pose explicitly, uses simple color
histogram features to describe regions, and allows for find-
ing the global solution in a single pass.

3. Approach

We develop a model-based approach that can track the
motion of the pose of an arbitrary, elongated object in the
image plane. We first partition an elongated object Oe

into K segments Oe = {Oi}Ki=1, as depicted in Fig. 2.
Then, each segment i is partitioned further into ki parts
Oi = {pi,j}ki

j=1 specified by square-like windows. Note
that the parts need not be semantic nor have equal windows.
We link the the parts with a chain graph Gc = (V, E), where
nodes V are associated with the parts and edges E are asso-
ciated with the links between consecutive parts in the chain.

Each part pi,j is associated with an observed appear-
ance feature fi,j and with hidden center location lti,j =

[xti,j , y
t
i,j ]

T and scale sti,j , forming random variable pti,j =

[lti,j , s
t
i,j ]

T. The variables are indexed with time t = 1, . . .

Object

Segments

Parts

Figure 2. Model hierarchy, with an example of a deformable, elon-
gated object, decomposed into K=3 segments that are referenced
with planar coordinate systems. Each segment is split further
into smaller parts, connected by pairwise distances to control its
stretching and shrinking. Two segments share a part, which is an-
chored at their hinge, denoting heavy deformation (e.g., articula-
tion). The orientation of the coordinate system of each segment is
estimated based on the tracked locations of the centers of the parts.
The coordinate systems are used, in turn, to control the bending of
each segment. In effect, the model captures deformations of the
object and maintains its spatial coherence over time.

and we keep fi,j constant in this work. We index the initial
frame with t = 0. The posterior over our pictorial structure
of Ot

e at frame It yields:

P (Ot
e|It, Ot−1

e ) ∝ (1)
K∏
i=1

ki∏
j=1

P (It|pti,j)︸ ︷︷ ︸
Appearance term

ki−1∏
j=1

P (pti,j , p
t
i,j+1)︸ ︷︷ ︸

Spatial term

P (pti,j , p
t
i,j+1|Ot−1

i )︸ ︷︷ ︸
Temporal term

,

where we set pti,ki
= pti+1,1, i.e. the last part of each seg-

ment is the first part of the next segment in the chain, so
denoting a hinge. Thus, our graph has |V| =

∑K
i=1 ki −

(K − 1) nodes resulting in |V||p|-dimensional state space.
Fixed appearance: The appearance of each variable pi,j

is simply captured with a normalized color histogram fi,j =
hi,j . It takes the following form:

P (It|pti,j) = exp(− 1

νi,j
χ2(hi,j , h

t
i,j,c) ) (2)

where χ2(hi,j , h
t
i,j,c) is the chi-square distance between the

model histogram hi,j , precomputed in the initial frame I0,
and the histogram hti,j,c at a candidate location and scale
for part pi,j in the current frame It, with νi,j responsible
for possible appearance variations. Note our approach is
not limited to orientation invariant features though. As we
update the orientation of segments during tracking, orien-
tation variant features (e.g., gradient orientations) could be
updated accordingly [25].

The elongated segments Oi extend over rigid or elastic
regions. Pictorial structures whether model whole segments



and search exhaustively for their orientations [10, 31], or
split segments further into parts and model their constraints
locally [42]. We also split segments into parts but model
them hierarchically with spatio-temporal constraints, i.e.
with local distances between parts and global orientations
over segments to control their linear and angular deforma-
tions, respectively. Constraining each segment in a chain
with global orientation allows to control its local rigidity
without the need for higher order cliques in the graph, which
is the key to fast inference. Borrowing terminology from
automatic control, we consider the orientation to be a slow-
changing variable, which, in turn, allows us to update it
with one-frame lag without sacrificing the effectiveness of
the approach. In this way, such a general, inertial temporal
prior regularizes the dynamics of an object by favoring shift
motion that is common during tracking [43].

Spatial prior: Neighboring parts in the i-th segment,
pti,j and pti,j+1, are constrained to lie within some prede-
fined euclidean distance dti,j from each other, where:

dti,j =
∥∥lti,j − lti,j+1

∥∥
2

(3)

However, the changing scale of the object affects the dis-
tances, so we obtain:

P (pti,j , p
t
i,j+1) = P (lti,j , l

t
i,j+1|sti,j , sti,j+1)P (sti,j , s

t
i,j+1)

(4)
For simplicity, we model the joint scale prior P (sti,j , s

t
i,j+1)

for each pair of parts in the chain as a uniform distribu-
tion. Hence, we omit it and reduce the spatial term only to
P (lti,j , l

t
i,j+1|sti,j , sti,j+1) as:

P (pti,j , p
t
i,j+1) ∝ P (lti,j , l

t
i,j+1|sti,j , sti,j+1) (5)

∝ N ( dti,j ; ρti,jµ
t−1
i,j;i,j+1, (ρ

t
i,jσ

t−1
i,j;i,j+1)2 )

The parameters µt−1
i,j;i,j+1 and σt−1

i,j;i,j+1 in (5), computed in
the previous frame, denote mean distance between locations
lti,j and lti,j+1 of two neighbor parts and its standard devi-
ation, respectively. They are rescaled with ρti,j to capture
their dependence on the local scales of parts. Here, we sim-
ply set the rescaling factor as an arithmetic mean of these
scales ρti,j = 1

2 (sti,j + sti,j+1).
Shift-geared temporal prior: We reference each seg-

ment i with a 2D coordinate system (CS), having initial ori-
entation Θ0

i w.r.t. the image coordinate system. This allows
for determining local angular relations of the neighboring
parts, which are defined by the angular offsets θi,j;i,j+1 in
the CS as arccos between the vector [1, 0] (defined in the
CS) and the normalized vector l0i,j+1 − l0i,j . The bending of
all the parts in the segment is then controlled during track-
ing with the temporal term as:

P (pti,j , p
t
i,j+1|Ot−1

i ) =M(θti,j;i,j+1; θi,j;i,j+1 +Θt−1
i , κi)

(6)

whereM denotes the von Mises distribution and κi denotes
angular stiffness. The stiffness penalizes angular devia-
tions from θi,j;i,j+1 (with offset orientation Θt−1

i ) caused
by deformation and rotation of the segment. Therefore, our
model favors such arrangements of parts of the segment,
which maintain predefined geometrical configuration, pre-
suming that the orientation Θt−1

i does not change much be-
tween successive frames. The stiffness parameters κi can
be adjusted to account for the anticipated change in angular
speed of Θt−1

i between frames.
Configuration: Our system admits a simple, intuitive

procedure for configuring the pose of an elongated object
Oe in the initial frame I0. We: (1) split Oe into |V| parts
p0i,j by specifying their locations and sizes, (2) link neigh-
bor parts with a chain Gc, (3) and specify K segments of
parts with their corresponding orientations Θ0

i . Then, the
features fi,j , mean pairwise distances µ0

i,j;i,j+1, and an-
gular offsets θi,j;i,j+1 from Θ0

i are computed from these
one-shot annotations (as special case, straight objects en-
force θi,j;i,j+1 = 0, independent of annotation).

Inference: We match our model (1) to each
frame It by inferring on its negative log-posterior
− log(P (Ot

e|It, Ot−1
e )) with dynamic programming to

obtain the MAP configuration of the elongated object
Ot

e,MAP . The inference is fast and its complexity scales
linearly with the number of object parts |V|.

Update: The global scale st of the whole object is com-
puted as the average over scales of all windows of parts and
passed through the IIR filter as st = (1 − r)st−1 + rst

with the forgetting factor r. Alternatively, the scales could
be updated individually for each particular part or segment,
depending on a scenario. The parameters of (5) are then up-
dated with the filtered scale as µt

i,j;i,j+1 = stµt−1
i,j;i,j+1 and

σt
i,j;i,j+1 = stσt−1

i,j;i,j+1.
The updated orientation Θt−1

i in (6) will be the reference
for θi,j;i,j+1 in segment i ∈ 1, . . . ,K in the next frame
It+1. Knowing the inter-frame correspondences between
the MAP locations of parts Lt−1

i and Lt
i (Fig. 3) of i-th

segment, Θt
i is obtained through Kabsch algorithm [18] that

estimates segment’s rotation Rt
i in the least-squares sense

by solving1:

argmin
Rt

i

ki∑
j=1

∥∥∥l̂ti,j − stRt
i l̂
t−1
i,j

∥∥∥2
2

(7)

Note, that the points l̂ti,j and l̂t−1
i,j are translated to the ori-

gins of their respective CSs, with necessary rescaling of
the latter. The stiffness parameters κi remain constant, as
they are assumed invariant to any object deformations and
change in viewpoint.

1For ease of readability, we drop the index t−1 in the notation of scale
change and rotation from frame t− 1 to t.
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Figure 3. Synthetic example of i-th segment of heavily deformable
object, whose scale st increases. The segment, consisting of
ki = 4 parts, deforms and rotates by Rt

i between two succes-
sive frames. The corresponding locations of parts between frames,
translated back to the origin of the 2D CS, allow for recovering
segment’s rotation Rt

i despite its incident deformation. The dotted
links connect it to neighbor segments, which rotate independently
of the i-th segment.

4. Experimental results

In this Section, we experimentally challenge the versa-
tility of our model (1). We show that our pose-configurable
system can be used successfully to track elongated objects
in the image plane, which can shift, rotate, change scale, be
rigid and deform by flexing, articulating, and vibrating.

We also quantitatively evaluate our tracker on PROST
dataset [34] with challenges of fast viewpoint changes, mo-
tion blur, heavy scale and illumination changes, and fre-
quent occlusions. The tracker is compared against state-of-
the-art trackers on PROST that learn their appearance on-
line. We demonstrate that our spatio-temporal model with
remarkably simple, fixed appearance term leads to compet-
itive or better tracking performance. As the occlusion event
is not modeled explicitly, we enforce constant appearance
so that the tracker is robust against occlusions and thus can
recover easily by redetecting the object.

Implementation details: In all experiments, we have
the following, fixed settings. For (2), we use 512-
dimensional RGB color histograms hi,j (8 bins per channel),
with weighting νi,j = 2.0. The mean distance in (5) is com-
puted from the initial locations of the parts as µ0

i,j;i,j+1 =∥∥l0i,j − l0i,j+1

∥∥
2
, while the standard deviation σ0

i,j;i,j+1 as
the average of their window radii that are close to Θ0

i . The
angular stiffness parameters κi of (6) correspond to 60◦.
States of each part are defined over a regular, sparse 3D
grid with size twice (×2) the size of the part. The scale is
partitioned as ×0.9, ×1.0, ×1.1 and filtered with r = 0.1.

Our tracking algorithm is a C++ single-threaded imple-
mentation (without SSE). It ran on a plain PC equipped with
Intel Xeon@2.4 GHz, 4 MB cache, and 3.5 GB RAM. The
frame processing speed scales linearly with the number of
parts but also depends on their window sizes (optionally, the
latter could be factored out with [30]).

Qualitative evaluation: We demonstrate that our
method applies to tracking elongated objects of various
shapes, which are rigid or deform by flexing, articulating,
and vibrating in the image plane. The instances are tracked
in the video sequences Liquor [34], Surgical suture [27],
Robotic arm, Toy tram, Guitar string2, shown in Fig. 4.

In Liquor, the tracker is very successful despite multi-
ple and heavy occlusions of the glass bottle and is not con-
fused by another bottle, which is fairly similar in color. In
Robotic arm, the tracker follows the 2D pose of the artic-
ulating robotic manipulator composed of two segments. In
Surgical suture, the suture is a very long object, which is
thin and deforms heavily and unsystematically. By split-
ting the suture into piece-wise linear segments, our pose-
configurable system can follow it very precisely. Despite no
constraints at the ends of the suture, the tracker stabilized
both ends correctly, which is a challenging task [15]. We
posit this satisfactory behavior owes to the fact that, while
some segments rotate, others only shift, and thus our hier-
archical, spatio-temporal model renders the tracker stable.
In Toy tram, our model can explain the bending and scale
change of the tram and is robust against moderate out-of-
plane rotations affecting its appearance. In Guitar string,
the tracker is able to precisely register intricate deforma-
tions of the string with very little information available. The
parts have only few pixels. In this case though, the tracker
ran with fixed scale to prevent the model from shrinking on
the textureless, string region. For comparison, the same se-
quence with scale update is shown in Fig. 5.

Quantitative evaluation: We evaluate quantitatively
our approach on PROST. We can easily configure our
region-based model to rigid objects with K=1 segment at
initial orientation Θ0

1, and partition it evenly into k1 = 3
parts, i.e. such that the parts span the segment with no (or
very small) overlap (see, e.g., top rows in Fig. 4, 5). We
then use the following evaluation measures:

• Intersection-over-union, as in [34],

• Mean distance precision, as in [5].

Specifically, the first criterion renders a detection as true
positive when its bounding box overlaps with the ground
truth bounding box by > 50%. The recall performance is
reported as the number of true positives over the sum of true
positives and false negatives. The second criterion com-
putes the `2-distance between the centers of detected and
ground truth bounding-boxes.

To make the comparison fair, we fix the scale of our
tracker and always output the same size of the ground truth
bounding-box. Note that in the first frame of each sequence,
our tracker outputs center location of the whole object that
is slightly misaligned (by several pixels) from the center of

2Last 3 video sequences were collected from YouTube.



Figure 4. Our qualitative results on sequences (best viewed in color), enumerated from top to bottom. We display each example individually
for better visualization. The left column shows initialized layouts of chained segments of evenly annotated parts. Their corresponding
orientations, updated over time, are depicted on image sides together with frame number and frame rate. (i) The glass bottle is configured
with K = 1 segment of k1 = 3 parts. (ii) Articulating robotic arm is split into K = 2 segments of k1 = 6 and k2 = 5 parts. (iii) We split
surgical suture into K = 6 segments of ki = 11 parts. (iv) The tram only bends so we configure it with K = 1 segment of k1 = 5 parts.
(v) One can expect the vibrating string to deform only slightly, so we configure it with K = 1 segment, as well. We split it into 114 parts,
as we observed that its registered motion was more realistic with the increased number of its ”mini-parts”.

the ground truth bounding-box, as it averages the locations
of all its parts. For this reason, we precompute this mis-
alignment vector in the first frame and fix it for the whole
duration of the sequence. Then, in subsequent frames, the
tracker shifts our center by the above, constant offset.

The quantitative results are shown in Table 1. Our tracker
with constant appearance yields competitive performance
with respect to TLD [19] and GD [22], while outperform-
ing others, and processes videos at ∼ 100 fps. GD used
scale update for evaluation though, while TLD struggles
with deformable objects [19]. Our method performs best
(top table) on the Liquor sequence with blur and multiple,
partial and full occlusions and on the Lemming sequence
with blur and heavy scale changes. Interestingly, it outper-
forms FT [1], which likewise splits an object into parts and
fixes their appearance. For the sake of coherency of the ex-
periments, we also ran our algorithm to detect scale change.
We observed comparable performance (see, e.g., top row in
Fig. 4) and the frame rate was ∼ 45 fps. Our tracker was
worse on the Box sequence (similarly to FT), in which the
box drastically changed its appearance due to heavy illumi-
nation change on its reflective surface (Fig. 5). Hence, our

model should benefit from additional features in the appear-
ance term. This work aimed at a general method with the
focus on the strong spatio-temporal and basic appearance
models that jointly led to state-of-the-art results at very high
frame rate.

5. Conclusions

This paper proposes a tracker that: (i) is modular, with
one-shot learned spatio-temporal model and without ded-
icated model of dynamics, (ii) explicitly estimates various
motions in the image plane, including deformations, by out-
putting detailed 2D pose (locations and scales of parts and
orientations of segments), (iii) is robust against appearance
changes resulting from change of viewpoint and occlusions,
(iv) yields simple implementation with low computational
cost allowing rates up to 100 fps, (v) scales efficiently
from low- to high-dimensional state spaces, thus demon-
strating that our single model can be easily reconfigured
from one elongated object to another, (vi) uses a remark-
ably simple, fixed appearance term yet providing competi-
tive state-of-the-art results on the challenging benchmark.



Figure 5. Our current limitations (best viewed in color). Top: Since we integrate color histograms into our appearance term, the tracker
struggles with heavy illumination changes, present in the Box sequence (e.g., frames #349, #353). Bottom: Unlike snakes models, the
tracker is confused on textureless regions and shrinks when it updates scale. In Guitar string, it cannot discern between the correct and
smaller scale of the parts of the guitar string (with the same configuration as in Fig. 4) and blindly rescales the pairwise distance constraints.
Integrating other features into the appearance term (e.g., optic flow [34] or gradients [25]) might correctly address these challenges.

Complementary to on-line appearance update algo-
rithms, our future work will pursue development of on-
line reconfiguration update mechanisms for updating object
rigidity constraints over time. Since the proposed generic
tracker allows for attributing local rigidity constraints over
the spatio-temporal space occupied by various elongated
objects, it thus opens opportunities to investigate dynamic
adaptation of rigidity constraints for more robust tracking.
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